

Algorithms II

Activity:
Recap

Algorithms

Recap Algorithms

An Algorithm is a set of simple instructions that are done in a
certain order to solve a problem.

Here’s an example: Making and eating toast.

Algorithms

It is important to remember
when writing an algorithm to
keep instructions:
• Simple
• In the correct order
• Unambigious
• Relevant to solving the

problem at hand

Where do we use algorithms in
everyday life?

Recap
Decomposition

Recap Decomposition

Decomposition is the process
of breaking a complex
problem down into smaller
component parts.

Real world examples of using
decomposition include:
• Creating a video game
• Complex maths problems
• Cooking
• Cleaning your room

Recap
Abstraction

Recap Abstraction

Abstraction is the process of
removing unnecessary detail
and simplifying.

Abstraction is used to remove
unnecessary detail from a real-
world situation and to model
the simplified result in an
algorithm or program.

Recap
Subroutines

Recap Subroutines

Subroutines are a sequence of instructions that perform a specific
task.

Subroutines in
Python

Functions in Python

Subroutines are implemented as functions in Python.
A function is a subroutine that usually takes in one or more values
from the program and then returns a value back.

Functions in Python - Example

#Functions in Python

def cubeVolume(side):

vol = side ** 3

return vol

sideLength = int(input("Enter side length of a cube: "))

result = cubeVolume(sideLength)

print ("The cube's volume is: ", result)

Functions in Python - Example

#Functions in Python

def cubeVolume(side):

vol = side ** 3

return vol

sideLength = int(input("Enter side length of a cube: "))

result = cubeVolume(sideLength)

print ("The cube's volume is: ", result)

1

Functions in Python - Example

#Functions in Python

def cubeVolume(side):

vol = side ** 3

return vol

sideLength = int(input("Enter side length of a cube: "))

result = cubeVolume(sideLength)

print ("The cube's volume is: ", result)

1

2

Functions in Python - Example

#Functions in Python

def cubeVolume(side):

vol = side ** 3

return vol

sideLength = int(input("Enter side length of a cube: "))

result = cubeVolume(sideLength)

print ("The cube's volume is: ", result)

1

2

3

Functions in Python - Example

#Functions in Python

def cubeVolume(side):

vol = side ** 3

return vol

sideLength = int(input("Enter side length of a cube: "))

result = cubeVolume(sideLength)

print ("The cube's volume is: ", result)

side = value of sideLength

1

2

3

Functions in Python – Example

#Functions in Python

def cubeVolume(side):

vol = side ** 3

return vol

sideLength = int(input("Enter side length of a cube: "))

result = cubeVolume(sideLength)

print ("The cube's volume is: ", result)

side = value of sideLength

1

2

3

4

Functions in Python - Example

#Functions in Python

def cubeVolume(side):

vol = side ** 3

return vol

sideLength = int(input("Enter side length of a cube: "))

result = cubeVolume(sideLength)

print ("The cube's volume is: ", result)

side = value of sideLength

1

2

3

4

5

Functions in Python - Example

#Functions in Python

def cubeVolume(side):

vol = side ** 3

return vol

sideLength = int(input("Enter side length of a cube: "))

result = cubeVolume(sideLength)

print ("The cube's volume is: ", result)

side = value of sideLength

1

2

3

4

5

6

Functions in Python - Example

#Functions in Python

def cubeVolume(side):

vol = side ** 3

return vol

sideLength = int(input("Enter side length of a cube: "))

result = cubeVolume(sideLength)

print ("The cube's volume is: ", result)

side = value of sideLength

result = vol

1

2

3

4

5

6

Functions in Python - Example

#Functions in Python

def cubeVolume(side):

vol = side ** 3

return vol

sideLength = int(input("Enter side length of a cube: "))

result = cubeVolume(sideLength)

print ("The cube's volume is: ", result)

side = value of sideLength

result = vol

1

2

7

3

4

5

6

Functions in Python – main()

#Functions in Python

def cubeVolume(side):

vol = side ** 3

return vol

def main():

sideLength = int(input("Enter side length of a cube: "))

result = cubeVolume(sideLength)

print("The cube’s volume is: ", result)

main()

We have extended the previous
program to define a function
called main() and call other
functions from it.
The Python interpreter will call
main() as the entry point to our
program.

Functions - Implementation

Consider the question below:

We have three points, A, B and
C. We know the distance from
A to B and B to C. We are
asked to calculate the
distance from A to C.

Let us create a function that
can calculate the hypotenuse
for any right-angled triangle.

Activity:
Calculating

the
Hypotenuse

Functions - Implementation

Length of hypotenuse h = (a2 + b2)
It is important to remember the main() function. The main function
is the first function in our code. Inside this function is where we
call/use all other functions that we have created.
It is the main body of the program and all other functions are the
subroutines.

#A program that calculates the hypotenuse.
def main():

#Main entry to the program

main()

Define Hypotenuse Function

A function has three parts:
1. Name: Name of the function - hypotenuseCalculator
2. Parameter(s): Variables that provide input to the function.

These variables exists only inside these functions. - a, b

3. Body: Block of code that processes the input(s) and returns a
value. - return hypotenuse

The first line of the function begins with the keyword def which
stands for define.

def hypotenuseCalculator(a, b):
hypotenuse = (a ** 2 + b ** 2) ** 0.5

return hypotenuse

User Output - Refresher

print(“…”) is a function that prints the given output data to the
console.

The following print function prints “Python is fun.” in the console.

print("Python is fun.")

We can combine multiple texts using a comma as a separator.

a = 5

b = 10

print("a = ", a, " b = ", b)

User Input - Refresher

input(“…") is a function that prints the given question to the
console and waits for the user to provide an input.

The following input function prints “Is Python fun? [Y/N] ” on the
console and expects the user to provide an answer.

input("Is Python fun? [Y/N] ")

The program will not proceed until the user has given an input.

Input as a String

User input comes into Python as a string, which means that when
you type the number 10 on your keyboard, Python saves the
number 10 into a variable as a string, not as a number.
These two statements are different in how the computer
processes them.

age = 10 #This is a number

age = "10" #This is a text/string

The result of an input(“…”) function is always a string. To convert it to a
number (int, float etc.) we need to use the appropriate converter
function.

Converter Functions

The int function converts a string or a number into a whole number
(an integer), which basically means that everything after the
decimal point is dropped.

int(123.456) = 123

int(‘123’) = 123

The float function converts a string or a number into a floating-

point number, which is a number with a decimal place.

float(12) = 12.0

float(“123.456”) = 123.456

Define Main Function

Once we have created the hypotenuse function, all that is
needed to be done is to call that function with the input values
inside the main function.

def main():
ab = int(input("Enter AB length: "))

bc = int(input("Enter BC length: "))
ac = hypotenuseCalculator(ab, bc)

print("Length of AC is: ", ac)

Hypotenuse Program

The whole program should look like this:

A program that calculates the hypotenuse.
def main():

ab = int(input("Enter AB length: "))
bc = int(input("Enter BC length: "))

ac = hypotenuseCalculator(ab, bc)
print("Length of AC is: ", ac)

def hypotenuseCalculator(a, b):

h = (a ** 2 + b ** 2) ** 0.5
return h

main()

Hypotenuse Program - Execution

The whole program should look like this:

A program that calculates the hypotenuse.
def main():

ab = int(input("Enter AB length: "))
bc = int(input("Enter BC length: "))

ac = hypotenuseCalculator(ab, bc)
print("Length of AC is: ", ac)

def hypotenuseCalculator(a, b):

h = (a ** 2 + b ** 2) ** 0.5
return h

main() 1

Hypotenuse Program - Execution

The whole program should look like this:

A program that calculates the hypotenuse.
def main():

ab = int(input("Enter AB length: "))
bc = int(input("Enter BC length: "))

ac = hypotenuseCalculator(ab, bc)
print("Length of AC is: ", ac)

def hypotenuseCalculator(a, b):

h = (a ** 2 + b ** 2) ** 0.5
return h

main() 1

2

Hypotenuse Program - Execution

The whole program should look like this:

A program that calculates the hypotenuse.
def main():

ab = int(input("Enter AB length: "))
bc = int(input("Enter BC length: "))

ac = hypotenuseCalculator(ab, bc)
print("Length of AC is: ", ac)

def hypotenuseCalculator(a, b):

h = (a ** 2 + b ** 2) ** 0.5
return h

main() 1

2
3

Hypotenuse Program - Execution

The whole program should look like this:

A program that calculates the hypotenuse.
def main():

ab = int(input("Enter AB length: "))
bc = int(input("Enter BC length: "))

ac = hypotenuseCalculator(ab, bc)
print("Length of AC is: ", ac)

def hypotenuseCalculator(a, b):

h = (a ** 2 + b ** 2) ** 0.5
return h

main() 1

2
3

4

Hypotenuse Program - Execution

The whole program should look like this:

A program that calculates the hypotenuse.
def main():

ab = int(input("Enter AB length: "))
bc = int(input("Enter BC length: "))

ac = hypotenuseCalculator(ab, bc)
print("Length of AC is: ", ac)

def hypotenuseCalculator(a, b):

h = (a ** 2 + b ** 2) ** 0.5
return h

main() 1

2
3

4

5

Hypotenuse Program - Execution

The whole program should look like this:

A program that calculates the hypotenuse.
def main():

ab = int(input("Enter AB length: "))
bc = int(input("Enter BC length: "))

ac = hypotenuseCalculator(ab, bc)
print("Length of AC is: ", ac)

def hypotenuseCalculator(a, b):

h = (a ** 2 + b ** 2) ** 0.5
return h

main() 1

2
3

4

5

6

Hypotenuse Program - Execution

The whole program should look like this:

A program that calculates the hypotenuse.
def main():

ab = int(input("Enter AB length: "))
bc = int(input("Enter BC length: "))

ac = hypotenuseCalculator(ab, bc)
print("Length of AC is: ", ac)

def hypotenuseCalculator(a, b):

h = (a ** 2 + b ** 2) ** 0.5
return h

main() 1

2
3

4

5

6 a = ab, b = bc

Hypotenuse Program - Execution

The whole program should look like this:

A program that calculates the hypotenuse.
def main():

ab = int(input("Enter AB length: "))
bc = int(input("Enter BC length: "))

ac = hypotenuseCalculator(ab, bc)
print("Length of AC is: ", ac)

def hypotenuseCalculator(a, b):

h = (a ** 2 + b ** 2) ** 0.5
return h

main() 1

2
3

4

5

6

7

a = ab, b = bc

Hypotenuse Program - Execution

The whole program should look like this:

A program that calculates the hypotenuse.
def main():

ab = int(input("Enter AB length: "))
bc = int(input("Enter BC length: "))

ac = hypotenuseCalculator(ab, bc)
print("Length of AC is: ", ac)

def hypotenuseCalculator(a, b):

h = (a ** 2 + b ** 2) ** 0.5
return h

main() 1

2
3

4

5

6

7

8

a = ab, b = bc

Hypotenuse Program - Execution

The whole program should look like this:

A program that calculates the hypotenuse.
def main():

ab = int(input("Enter AB length: "))
bc = int(input("Enter BC length: "))

ac = hypotenuseCalculator(ab, bc)
print("Length of AC is: ", ac)

def hypotenuseCalculator(a, b):

h = (a ** 2 + b ** 2) ** 0.5
return h

main() 1

2
3

4

5

6

7

8

9

a = ab, b = bc

Hypotenuse Program - Execution

The whole program should look like this:

A program that calculates the hypotenuse.
def main():

ab = int(input("Enter AB length: "))
bc = int(input("Enter BC length: "))

ac = hypotenuseCalculator(ab, bc)
print("Length of AC is: ", ac)

def hypotenuseCalculator(a, b):

h = (a ** 2 + b ** 2) ** 0.5
return h

main() 1

2
3

4

5

6

7

8

9

a = ab, b = bc

ac=h

Hypotenuse Program - Execution

The whole program should look like this:

A program that calculates the hypotenuse.
def main():

ab = int(input("Enter AB length: "))
bc = int(input("Enter BC length: "))

ac = hypotenuseCalculator(ab, bc)
print("Length of AC is: ", ac)

def hypotenuseCalculator(a, b):

h = (a ** 2 + b ** 2) ** 0.5
return h

main() 1

2
3

4

5

6

7

8

9

10

a = ab, b = bc

ac=h

Hypotenuse Program - Execution

The whole program should look like this:

A program that calculates the hypotenuse.
def main():

ab = int(input("Enter AB length: "))
bc = int(input("Enter BC length: "))

ac = hypotenuseCalculator(ab, bc)
print("Length of AC is: ", ac)

def hypotenuseCalculator(a, b):

h = (a ** 2 + b ** 2) ** 0.5
return h

main() 1

2
3

4

5

6

7

8

9

10

11

a = ab, b = bc

ac=h

Activity: Currency Converter

Write a program which can convert Pounds(£) to Euros(€), and vice
versa. Implement the flowchart on the following slide in Python using
functions.

main():
1. Ask the user to enter “1” to convert £ to € or “2” to convert € to £.
2. Call the function that performs the conversions with these inputs.

currencyConverter():
1. Takes in two inputs: user’s choice of 1 or 2, value to be converted.
2. The function then performs the calculation (Note: research must

be done to find out the conversion rates for pounds and euros.)
3. Returns the result to two decimal places.

Activity: Currency Converter

Activity: Temperature Converter

Implement the following converter which prompts the user to
enter a temperature in degrees Celsius and then converts this to
degrees Fahrenheit. Implement the flowchart in Python using
functions.

The program should produce the following output:
Degrees Celsius: xx.xx
Degrees Fahrenheit: yy.yy
Where xx.xx and yy.yy are the temperatures to 2 decimal places
displayed in Celsius and Fahrenheit respectively. Hint: To convert
the temperate in degrees Celsius to degrees Fahrenheit use the
following equation: Fahrenheit = (Celsius x 9/5) + 32

Hint: Be aware of integer division!

Activity: Jacket Potato

A jacket potato vendor has asked you to write a program to help
calculate prices for his shop. The customer will be asked two
questions: would they like either a medium or large size jacket
potato, and the number of toppings they would like.

Implement in Python, a program which prompts the user to enter
the letter “M” for medium and “L” for large. Next ask the user for
the number of toppings they would like to have. The total price is
calculated according to the following table:

Up to 2 toppings 3 or more toppings
Medium Jacket Potato £2.50 + 50p / topping £2.50 + 40p / topping

Large Jacket Potato £3.50 + 55p / topping £3.50 + 45p / topping

Activity: Jacket Potato

The code should then print the total cost of their order. An
example run might be:

Medium (M) or Large (L) jacket potato: L
Number of toppings: 3
Total cost: 4.85 pounds

The cost is calculated as 3.50 + (0.45 * 3) = 4.85.

Hint: Loops are not required for this program, but nested if
statements are.

Activity: Lottery

The national lottery has contacted you to make a new lottery
game.
The game will ask the user how many weeks they want to play
and for 3 numbers they want to select; First between 1-10, second
between 11-20 and third between 21-30.
If they match 1 number they win £10, 2 numbers £500, 3 numbers
£1,000,000.

Activity: Lottery

For the number of weeks playing:
1. Generate a winning number between 1-10

Activity: Lottery

For the number of weeks playing:
1. Generate a winning number between 1-10
2. Generate a winning number between 11-20

Activity: Lottery

For the number of weeks playing:
1. Generate a winning number between 1-10
2. Generate a winning number between 11-20
3. Generate a winning number between 21-30

Activity: Lottery

For the number of weeks playing:
1. Generate a winning number between 1-10
2. Generate a winning number between 11-20
3. Generate a winning number between 21-30
4. If num1 matches winningNum1 then: add one to counter

Activity: Lottery

For the number of weeks playing:
1. Generate a winning number between 1-10
2. Generate a winning number between 11-20
3. Generate a winning number between 21-30
4. If num1 matches winningNum1 then: add one to counter
5. If num2 matches winningNum2 then: add one to counter

Activity: Lottery

For the number of weeks playing:
1. Generate a winning number between 1-10
2. Generate a winning number between 11-20
3. Generate a winning number between 21-30
4. If num1 matches winningNum1 then: add one to counter
5. If num2 matches winningNum2 then: add one to counter
6. If num3 matches winningNum3 then: add one to counter

Activity: Lottery

For the number of weeks playing:
1. Generate a winning number between 1-10
2. Generate a winning number between 11-20
3. Generate a winning number between 21-30
4. If num1 matches winningNum1 then: add one to counter
5. If num2 matches winningNum2 then: add one to counter
6. If num3 matches winningNum3 then: add one to counter
7. If counter = 1, Then win £10

Activity: Lottery

For the number of weeks playing:
1. Generate a winning number between 1-10
2. Generate a winning number between 11-20
3. Generate a winning number between 21-30
4. If num1 matches winningNum1 then: add one to counter
5. If num2 matches winningNum2 then: add one to counter
6. If num3 matches winningNum3 then: add one to counter
7. If counter = 1, Then win £10
8. If counter = 2, Then win £500

Activity: Lottery

For the number of weeks playing:
1. Generate a winning number between 1-10
2. Generate a winning number between 11-20
3. Generate a winning number between 21-30
4. If num1 matches winningNum1 then: add one to counter
5. If num2 matches winningNum2 then: add one to counter
6. If num3 matches winningNum3 then: add one to counter
7. If counter = 1, Then win £10
8. If counter = 2, Then win £500
9. If counter = 3, Then win £1,000,000

Activity: Lottery

For the number of weeks playing:
1. Generate a winning number between 1-10
2. Generate a winning number between 11-20
3. Generate a winning number between 21-30
4. If num1 matches winningNum1 then: add one to counter
5. If num2 matches winningNum2 then: add one to counter
6. If num3 matches winningNum3 then: add one to counter
7. If counter = 1, Then win £10
8. If counter = 2, Then win £500
9. If counter = 3, Then win £1,000,000
10. Print winning numbers + how much they won.

Extension Activity: Lottery

Try adding in ticket costs, then the game can include profit,
amount loss, or even running the game until a profit is made!

Counting Heads

We want to create a program that allows us to repeatedly throw
multiple coins and each time they’ve been thrown, remove them
if they land on heads.

Here’s a visual example in Scratch of the program we want to
recreate in Python:
Coin Throwing Simulation

https://scratch.mit.edu/projects/344985981/fullscreen/

Activity: Counting Heads

Your task is to simulate the
amount of throws and how
many coins are remaining
after each throw.
Think about what variables you
will need to keep track of.

Extension:
Keep track of when half of the
coins had been removed. i.e.
after which throw.
Adjust it for rolling dice instead
of coins

Activity: Counting Heads

1. Enter the initial number of coins

Activity: Counting Heads

1. Enter the initial number of coins
2. Set the currentNumberOfCoins to initial coins

Activity: Counting Heads

1. Enter the initial number of coins
2. Set the currentNumberOfCoins to initial coins
3. Enter in the chanceOfHeads

Activity: Counting Heads

1. Enter the initial number of coins
2. Set the currentNumberOfCoins to initial coins
3. Enter in the chanceOfHeads
4. While the currentNumberOfCoins is more than zero

Activity: Counting Heads

1. Enter the initial number of coins
2. Set the currentNumberOfCoins to initial coins
3. Enter in the chanceOfHeads
4. While the currentNumberOfCoins is more than zero

a) For each coin in the range of 0 ->
currentNumberOfCoins

Activity: Counting Heads

1. Enter the initial number of coins
2. Set the currentNumberOfCoins to initial coins
3. Enter in the chanceOfHeads
4. While the currentNumberOfCoins is more than zero

a) For each coin in the range of 0 ->
currentNumberOfCoins

b) headsOrTails = random number between 0 and 1

Activity: Counting Heads

1. Enter the initial number of coins
2. Set the currentNumberOfCoins to initial coins
3. Enter in the chanceOfHeads
4. While the currentNumberOfCoins is more than zero

a) For each coin in the range of 0 ->
currentNumberOfCoins

b) headsOrTails = random number between 0 and 1
c) If headsOrTails == 1 then take away a coin

Activity: Counting Heads

1. Enter the initial number of coins
2. Set the currentNumberOfCoins to initial coins
3. Enter in the chanceOfHeads
4. While the currentNumberOfCoins is more than zero

a) For each coin in the range of 0 ->
currentNumberOfCoins

b) headsOrTails = random number between 0 and 1
c) If headsOrTails == 1 then take away a coin
d) Print out the number of Throws + currentNumberOfCoins

Activity: Counting Heads

1. Enter the initial number of coins
2. Set the currentNumberOfCoins to initial coins
3. Enter in the chanceOfHeads
4. While the currentNumberOfCoins is more than zero

a) For each coin in the range of 0 ->
currentNumberOfCoins

b) headsOrTails = random number between 0 and 1
c) If headsOrTails == 1 then take away a coin
d) Print out the number of Throws + currentNumberOfCoins

Extensions:
Keep track of when half of the coins had been removed. i.e. after
which throw
Adjust it for rolling dice instead of throwing coins

Activity: Visualising The Program

You can take the results from the program and add them to an
excel sheet and visualise the coins removed after each throw.
Here is an example graph with number of coins set to 200.

Nuclear Physics

Believe it or not, you have just simulated a rather difficult concept
in Nuclear Physics without even knowing it!

Ernest Rutherford –
Discovered the Structure

of Atoms

Radioactive Decay & Half-Life

What is Radioactive Decay?

What is Half-Life?

Radioactive Decay

Radioactive decay is the process which an unstable nucleus goes
through due to an imbalance between proton and neutron
numbers. Radioactive decay produces radiation which can be
harmful in high doses!

Neutron

Proton

Radioactive Decay

• Alpha Decay

• Beta Decay

• Gamma Radiation

What is it stopped by?

Radioactive Decay

• Alpha Decay

• Beta Decay

• Gamma Radiation

Paper

What is it stopped by?

Radioactive Decay

• Alpha Decay

• Beta Decay

• Gamma Radiation

Paper

Thin aluminium plate

What is it stopped by?

Radioactive Decay

• Alpha Decay

• Beta Decay

• Gamma Radiation

Which kind of radiation do you think is most similar to x-rays?
If you wanted to measure the perfect thickness of toilet paper,
which one would you use to do this?

Paper

Thin aluminium plate

What is it stopped by?

Nothing, but is reduced by
heavily dense materials
(Lead, Concrete etc.)

Half-Life

Half-life is the average amount of time it takes for the number of
undecayed atoms in a sample to halve.
For example: If we begin with 500 atoms of an element. The
amount of time it takes for 250 of these atoms to decay is the half-
life of that sample.

Undecayed
Atoms
Decayed Atoms

500 Atoms

Time = 0 seconds

250 Atoms

Time = 6 seconds

So the half-life for
this sample is 6
seconds.

125 Atoms

Time = 12 seconds

Half-Life Visualised

Radioactive Decay

We measure radioactive decay using a Geiger counter (Geiger-
Müller counter)

Every time the tube is hit by radiation it makes a clicking sound.

Chernobyl Nuclear Power Plant

On 26 April 1986 one of the nuclear reactors at the Chernobyl
Nuclear Power Plant exploded during a safety test. This released a
huge amount of radioactive material into the air which spread
over 9 days.

Chornobyl Nuclear Power Plant

Around 350,000 people have been
evacuated since the explosion and
the nearby villages have been
abandoned.

House and Primary School

Radioactivity at Chernobyl

Most areas had very low radioactivity, around 0.1 microSieverts
per hour. (The safe amount is around 26 microSieverts per day)
However there are “hotspots” where it is much higher.

Half-Life and Carbon-Dating

Knowing how long a sample will remain at a certain level of
radioactivity helps us decide which radioactive elements should
be used in different situations.
Since the isotope Carbon-14 has a long half-life scientists and
archeologists can use half life to figure out approximately how old
an organic object is. This is known as carbon-dating.

Shroud of Turin supposedly
depicting the face of Christ.

It’s also used in Archeology

Isotopes

Medical Tracers

Radioactive tracers are used
to diagnose conditions in the
human body. Doctors can
trace the movement of these
radioactive atoms as they
move through the body’s cells.

Radioactive tracer
concentrated in the brain,
kidneys and bladder.

Activity:
Recap Lists

What are Lists?

A computer program often needs to store a sequence of values and
then process them.

For example if you had to store the below sequence of values, how
many variables would you need?

This is where lists become very useful, saving us time and making the
process of storing a sequence of values much easier.

List definition: A List is a collection of values which is ordered and
changeable.

32 54 67.5 29 35 80 115 44.5 100 65

Lists in Python

#Introduction to Lists

#Two ways of initializing a list

initialisingAnEmptyList = []

initialisingAListWithValues = [32,54,66,28,39,87,111]

Each item in a list has a corresponding index number, which is an
integer value, starting with the index number 0. We use this index
number to access an item in the list.

index 0 1 2 3 4 5 6
values 32 54 66 28 39 87 111

Accessing Lists in Python

#Introduction to Lists

#Two ways of initializing a list

initialisingAnEmptyList = []

initialisingAListWithValues = [32,54,66,28,39,87,111]

#Accessing values in a List

thirdItem = initialisingAListWithValues[2]

firstItem = initialisingAListWithValues[0]

#Error accessing the list

errorInAccess = initialisingAListWithValues[7] Causes runtime
error

Replacing Values in a List

To replace a value in the list we first identify the index number of
the value to be changed and then set the value in the
corresponding index number to a different value.

initialisingAListWithValues = [32,54,66,28,39,87,111]

#Replacing values in a List

initialisingAListWithValues[5] = 88

List Boundaries

You have to be careful that the index number stays within the
valid range.
Attempting to access an element whose index number is not
within the valid index range is called an out-of-range error or a
bounds error which in turn causes a run-time exception.

Example:
values = [10,20,30,40,50,60,70,80,90]

values[9] = number #results in

#IndexError: list index out of range

Length of a List

We can use the len() function to obtain the length of the list; that
is, the number of elements:

values = [10,20,30,40,50,60,70,80,90]

numElements = len(values)

#The value of numElements will be 9

Iterating a List

A for loop is ideal to iterate through the items in a list. We use a
variable in the for loop that corresponds to the index number.
The range(n) function yields the numbers 0, 1, ... n-1, and range(a,
b) returns a, a+1, ... b-1 up to but not including the last number
(b). The combination of the for-loop and the range() function
allows you to iterate through the list easily.

#Initialising a list with values

aListWithValues = [32,54,66,28,30,87,111,72,94,16]

#Loop over the index values

for i in range(len(aListWithValues)):

print(i, aListWithValues[i])

Activity:
Review Lists

Linear Search

A linear search is a simple search process where a list is searched
sequentially until the required value is found.

For example if the required value is 4.

6 5 3 1 8 7 2 4

Linear Search

A linear search is a simple search process where a list is searched
sequentially until the required value is found.

For example if the required value is 4.

6 5 3 1 8 7 2 4

Linear Search

A linear search is a simple search process where a list is searched
sequentially until the required value is found.

For example if the required value is 4.

6 5 3 1 8 7 2 4

Linear Search

A linear search is a simple search process where a list is searched
sequentially until the required value is found.

For example if the required value is 4.

6 5 3 1 8 7 2 4

Linear Search

A linear search is a simple search process where a list is searched
sequentially until the required value is found.

For example if the required value is 4.

6 5 3 1 8 7 2 4

Linear Search

A linear search is a simple search process where a list is searched
sequentially until the required value is found.

For example if the required value is 4.

6 5 3 1 8 7 2 4

Linear Search

A linear search is a simple search process where a list is searched
sequentially until the required value is found.

For example if the required value is 4.

6 5 3 1 8 7 2 4

Linear Search

A linear search is a simple search process where a list is searched
sequentially until the required value is found.

For example if the required value is 4.

6 5 3 1 8 7 2 4

Linear Search

A linear search is a simple search process where a list is searched
sequentially until the required value is found.

For example if the required value is 4.

6 5 3 1 8 7 2 4

Linear Search

A linear search is a simple search process where a list is searched
sequentially until the required value is found.

For example if the required value is 4.

6 5 3 1 8 7 2 4

Binary Search

A binary search algorithm (also knowns as half-interval search) is
the algorithm where:
1. The middle value in a sorted list is inspected to see if it matches

the search value.
2. If the middle value is greater than the search value, the upper

half of the list is discarded. If it is less than the search value, the
lower half is discarded.

3. This process is repeated, with the list halving in size each time
until the search value is found.

For example if the value we are searching for is 4.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Binary Search

A binary search algorithm (also knowns as half-interval search) is
the algorithm where:
1. The middle value in a sorted list is inspected to see if it matches

the search value.
2. If the middle value is greater than the search value, the upper

half of the list is discarded. If it is less than the search value, the
lower half is discarded.

3. This process is repeated, with the list halving in size each time
until the search value is found.

For example if the value we are searching for is 4.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Binary Search

A binary search algorithm (also knowns as half-interval search) is
the algorithm where:
1. The middle value in a sorted list is inspected to see if it matches

the search value.
2. If the middle value is greater than the search value, the upper

half of the list is discarded. If it is less than the search value, the
lower half is discarded.

3. This process is repeated, with the list halving in size each time
until the search value is found.

For example if the value we are searching for is 4.

1 2 3 4 5 6 7

Binary Search

A binary search algorithm (also knowns as half-interval search) is
the algorithm where:
1. The middle value in a sorted list is inspected to see if it matches

the search value.
2. If the middle value is greater than the search value, the upper

half of the list is discarded. If it is less than the search value, the
lower half is discarded.

3. This process is repeated, with the list halving in size each time
until the search value is found.

For example if the value we are searching for is 4.

1 2 3 4 5 6 7

Binary Search

A binary search algorithm (also knowns as half-interval search) is
the algorithm where:
1. The middle value in a sorted list is inspected to see if it matches

the search value.
2. If the middle value is greater than the search value, the upper

half of the list is discarded. If it is less than the search value, the
lower half is discarded.

3. This process is repeated, with the list halving in size each time
until the search value is found.

For example if the value we are searching for is 4.

4

Binary Search

A binary search algorithm (also knowns as half-interval search) is
the algorithm where:
1. The middle value in a sorted list is inspected to see if it matches

the search value.
2. If the middle value is greater than the search value, the upper

half of the list is discarded. If it is less than the search value, the
lower half is discarded.

3. This process is repeated, with the list halving in size each time
until the search value is found.

For example if the value we are searching for is 4.

4

Activity:
Binary Search

in Python

Binary Search Solution – Search
Function

Binary Search
def binarySearch(sortedList, item):

first = 0
last = len(sortedList) - 1
found = False

while first <= last and not found:
midpoint = round((first + last) / 2)

if sortedList[midpoint] == item:
found = True

else:
if item < sortedList[midpoint]:

last = midpoint - 1
else:

first = midpoint + 1
return found

Binary Search Solution – main
Function

Binary Search main entry

def main():

mySortedList =

[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20]

itemToFind = 7

print(binarySearch(mySortedList,itemToFind))

main()

Recap
Sorting

Algorithms

Bubble Sort

How to Bubble Sort:
From left to right, compare two
numbers, swap if needed.
Repeat until all numbers in
correct order.

6 5 3 1 8 7 2 4

Bubble Sort

How to Bubble Sort:
From left to right, compare two
numbers, swap if needed.
Repeat until all numbers in
correct order.

5 6 3 1 8 7 2 4

Bubble Sort

How to Bubble Sort:
From left to right, compare two
numbers, swap if needed.
Repeat until all numbers in
correct order.

5 6 3 1 8 7 2 4

Bubble Sort

How to Bubble Sort:
From left to right, compare two
numbers, swap if needed.
Repeat until all numbers in
correct order.

5 3 6 1 8 7 2 4

Bubble Sort

How to Bubble Sort:
From left to right, compare two
numbers, swap if needed.
Repeat until all numbers in
correct order.

5 3 6 1 8 7 2 4

Bubble Sort

How to Bubble Sort:
From left to right, compare two
numbers, swap if needed.
Repeat until all numbers in
correct order.

5 3 1 6 8 7 2 4

Bubble Sort

How to Bubble Sort:
From left to right, compare two
numbers, swap if needed.
Repeat until all numbers in
correct order.

5 3 1 6 8 7 2 4

Bubble Sort

How to Bubble Sort:
From left to right, compare two
numbers, swap if needed.
Repeat until all numbers in
correct order.

5 3 1 6 8 7 2 4

Bubble Sort

How to Bubble Sort:
From left to right, compare two
numbers, swap if needed.
Repeat until all numbers in
correct order.

5 3 1 6 8 7 2 4

Bubble Sort

How to Bubble Sort:
From left to right, compare two
numbers, swap if needed.
Repeat until all numbers in
correct order.

5 3 1 6 7 8 2 4

Bubble Sort

How to Bubble Sort:
From left to right, compare two
numbers, swap if needed.
Repeat until all numbers in
correct order.

5 3 1 6 7 8 2 4

Bubble Sort

How to Bubble Sort:
From left to right, compare two
numbers, swap if needed.
Repeat until all numbers in
correct order.

5 3 1 6 7 2 8 4

Bubble Sort

How to Bubble Sort:
From left to right, compare two
numbers, swap if needed.
Repeat until all numbers in
correct order.

5 3 1 6 7 2 8 4

Bubble Sort

How to Bubble Sort:
From left to right, compare two
numbers, swap if needed.
Repeat until all numbers in
correct order.

5 3 1 6 7 2 4 8

Bubble Sort

How to Bubble Sort:
From left to right, compare two
numbers, swap if needed.
Repeat until all numbers in
correct order.

5 3 1 6 7 2 4 8

After every iteration/pass, each item ”bubbles”
up to the location where it belongs.

Bubble Sort

How to Bubble Sort:
From left to right, compare two
numbers, swap if needed.
Repeat until all numbers in
correct order.

1 2 3 4 5 6 7 8

Repeat the process until all the numbers are in
correct order.

Activity:
Bubble Sort in

Python

Bubble Sort Solution – Sort
Function

Bubble sort function
def bubbleSort(aList):

n = len(aList)

swapped = False
while n > 0:

swapped = False
for i in range(1, n):

if aList[i-1] > aList[i]:
temp = aList[i]
aList[i] = aList[i-1]
aList[i-1] = temp

#aList[i], aList[i-1] = aList[i-
1],aList[i]

swapped = True

n = n - 1
return alist

Bubble Sort Solution – main
Function

Bubble sort main

def main():

unorderedList = [34,23,56,89,23,43,55,75,4,2,6,10,11]

print(bubbleSort(unorderedList))

main()

