technocamps

Using Scratch across the CfW

Cronfa Gymdeithasol Ewrop European Social Fund

0

5

PRIFYSGOL

itwales 🖗 ABERYSTWYTH

π

Ô

glyndŵr Wrecsam

Wrexham

glyndŵr

Prifysgol Metropolitan Caerdydd

Introduction

Overview

Coding can be implemented across all the Areas of Learning and Experience, reinforcing learning in the classroom and improving digital literacy in the process.

In today's world digital literacy is an essential skill for learners to develop. The technological requirements for jobs are ever increasing, and a strong start in digital skills will prepare learners and give them an advantage.

Digital Resources: https://tc1.me/educonf22resources

Youtube Tutorials: https://tc1.me/progacrosscurriculum Online Resources

- More Ideas to Program
- Health and Wellbeing • Food Pyramid • Pong
- Mathematics and Numeracy • Drawing Shapes
- Estimating Pi
 Science and
 Technology
 - Iechnology
 States of Matter
 Water Cycle

- Languages, Literacy and Communication
- Translating Quiz
- Pronouns Quiz
- Expressive Arts
- Algorithmic ArtMatching Art Styles
- Humanities
 - Interactive Timeline
- Migration Simulation

Translating Game

Extensions

Extensions can be added into Scratch to give us additional blocks that help us accomplish specific tasks.

One of these extensions makes use of Google Translate to translate text between languages.

We can add this extension by clicking in the **bottom left corner** of Scratch and searching through the Extensions.

Variables and Lists

We will have to create both a variable and a list for this program. These can be added under the variables tab.

Make a variable called **word**, this will hold the word that is currently displayed onscreen.

Make a list called **words**, this will hold all the words that will appear to be translated. Words can be added to the list on the game screen, and then hidden from view in the variables tab.

Translating Game

Translator Blocks

Assembling Translator

Translating Game

If Statement

Full Code

Pen Shapes

Variable Patterns

Pen Shapes

Variable Patterns

Variable Patterns

By editing the values inside the loop, (particularly the angle) you will see different patterns emerge.

You can also use the change colour block to add some more colour to the patterns.

Background

Begin by making a background that includes land, sea, mountains and a river.

These are the key components that we're going to need to create an animation of the water cycle.

The positional values in the code below will depend on the drawing.

Costumes

We're going to need 5 costumes to switch between in this animation.

Water Vapour - to demonstrate evaporation

Clouds

2x Rainclouds - to animate the rainfall

River Flow - to show the rain water returning to the sea.

Sprite - Evaporation

when I receive Evaporation	switch costume to Vapour -
go to x: 113 y: -75	glide 1 secs to x: 113 y: 80

Sprite - Clouds	
when I receive Clouds Switch costume to Cloud Glide 1 Secs to x: -113 y: 80	

Sprite - Rain

Sprite - River Flow

Background - Animating

Sprite - Full Code

Background - Full Code

States of Matter

Sprites

Create a simple circular sprite to represent an atom. If you prefer this could be a molecule instead. We will only require 1 sprite as it will be cloned.

Background

Sprite - Clones

11

States of Matter

Sprite - Solid

Sprite - Liquid

when I receive Liquid -	move 5 steps	forever
		J
point in direction pick rand	om 1 to 360	

Sprite - Gas

States of Matter

Background - Full Code

Sprite - Full Code

Background

Begin by making a background consisting of a square with a circle of equal diameter inside.

Make them different colours as this is how we will calculate the ratio of areas and pi.

The colours you choose will be used throughout the code.

Variables

technocamps

We will have to create three variables to allow us to calculate pi in this program.

Inside Circle - will count the number of times the sprite lands inside the circle.

Outside Circle - will count the number of times the sprite lands inside the square.

Pi Estimation - will be the ratio of times inside and outside the circle, which is equal to pi.

Background - Starting Conditions

Sprite - Random Movement

technocamps

Sprite - Inside or Outside?

Use the colour chooser to select the colours from your background.

Sprite - Calculating the Ratio

Background - Full Code

Sprite - Full Code

Background

Begin by making a background that looks like a map for your people to migrate across.

Costumes

We're going to need 3 different sprites for this simulation.

Entrepreneur - These will be our people migrating across the map, they will need a separate boat costume!

War - Our entrepreneurs will want to avoid any wars.

Money - Our entrepreneurs will be seeking out wealthy cities.

Entrepreneur - Cloning

Entrepreneur - Switching to Boat

War

Entrepreneur - Movement Close to War

Money

Entrepreneur - Move Toward Money

Entrepreneur - Full Code

Money and War - Full Code

Sprites

Create some sprites of various shapes.

The size and colour of these will be altered by the algorithm to add diversity, so only distinctly different shapes are needed.

The same code will be copied into each shape.

Variables

Make four new variables to begin. These will be a counter and user inputs to create the art, name them appropriately:

count, answer 1, answer 2 and answer 3

These could be Age, Bedtime and Family.

24

Questions - Stage

Answers - Stage

set Count - to 0	ask What's your age? and wait Set Family - to 0
set Age ▼ to 0 set and	ask What's your bedtime? and wait
set Bedtime - to 0	ask How many people are in your family? and wait

Starting Conditions - Sprite(s)

Position - Sprite(s)

Colour and Size - Sprite(s)

Layers - Sprite(s)

Sprite(s) - Full Code

Sprite(s) - Clones - Full Code

Stage - Questions - Full Code

technocamps

@Technocamps

Find us on Facebook