
Using Python
across the CfW

Introduction 1

Coding can be implemented across all the Areas of Learning
and Experience, reinforcing learning in the classroom and
improving digital literacy in the process.

In today’s world digital literacy is an essential skill for learners
to develop. The technological requirements for jobs are ever
increasing, and a strong start in digital skills will prepare
learners and give them an advantage.

Digital Resources:
https://tc1.me/educonf22resources

Youtube Tutorials:
https://tc1.me/progacrosscurriculum

Overview

Online
Resources

More ideas to
Program

Micro:bit Pedometer 2

Aims

Firstly go to the following website:
https://python.microbit.org/v/3
This allows you to interact with with a simulated BBC Micro:bit. Delete all the
default code you see.

To use the BBC Micro:bit to count our steps for us, we will need to import one
library. We will be using a variety of functions from the library, so we can go
ahead an import the whole library.

from microbit import *

This will import all the libraries needed for our Python code to interact with the
BBC Micro:bit.

Importing Libraries

This is example code on how you can use
a BBC Micro:bit to make a pedometer.

The following pages will provide you with
the code required to get a BBC Micro:bit to
count the steps you take.

Micro:bit Pedometer

https://python.microbit.org/v/3

Micro:bit Pedometer 3

AimsFirstly we import our Micro:bit library, and import all methods from it (as
shown by the *).

This code then declares and sets a variable called steps to 0. This will keep
track of how many steps we take.

We now start a loop, with a condition which will always be true. This is done to
ensure our code continues to run forever.

Within this loop we add an if statement. This is a conditional, that when true,
the code which is placed after it is exectued. In this case, we are checking if
the accelerometer has detected the device has been shaken.

If the device has been shaken, we add one to our steps variable, and we then
display the current amount of steps.

from microbit import *

steps = 0

while True:
if accelerometer.was_gesture(‘shake’):

 steps += 1
 display.show(steps)

Creating the Pedometer

Micro:bit Music Maker 4

Aims

Firstly go to the following website:
https://python.microbit.org/v/3
This allows you to interact with with a simulated BBC Micro:bit. Delete all the
default code you see.

To use the BBC Micro:bit to create music for us, we will need to import one
library and a function. We will be using a variety of functions from the library,
so we can go ahead and import the whole library.

from microbit import *
import music

Firstly, we are importing the microbit library. This allows us to use Python to
control and interact with our BBC Micro:bit.
Secondly, we are importing the music library. We can use the “play” function
and provide it with the pitch & duration of each note.

Importing Libraries

This is example code on how you can use
a BBC Micro:bit to compose and create
music.

The following pages will provide you with
the code required to get a BBC Micro:bit to
play the song Aderyn Melyn.

Micro:bit Music Maker

https://python.microbit.org/v/3

Micro:bit Music Maker 5

AimsWe create notes using python using the music library we imported earlier. The
play function requires a maximum of two pieces of information: the note, and the
duration. Its not essential to give the duration, but we must always provide a note.

The below piece of code plays a C4 note (Middle C), for 4 bars (the standard
length for a note with the play function).

music.play(['C4:4'])

We are not limited to just one note per line, we can string multiple notes together,
to be played one after another.

music.play(['C4:4', 'B4', 'D3:3'])

We can also add rests into our code, which will give us a rest in-between notes.
Notice the rest in-between notes B4 & D3.

music.play(['C4:4', 'B4', 'R', 'D3:3'])

Finally, we can introduce loops, to repeat our notes multiple times. The following
code repeats all 3 notes in sequence 2 times, resulting in 6 notes in total: C4, B4,
D3, C4, B4, D3.

for i in range(2):

 music.play(['C4', 'B4', 'D3'])

Creating Notes

Micro:bit Music Maker 6

AimsHere is an example program for playing the song “Yellow Bird, Up High in
Banana Tree” or “Aderyn Melyn”.

from microbit import *
import music

for i in range(2):

 music.play(['C4:4', 'C5:12', 'B4:4', 'C5:2',
'C5:2','R', 'A4:4', 'A#4:2', 'A#4', 'A#4', 'A#4',
'A#4', 'A#4', 'C5', 'A4:4', 'A4', 'R:2'])

for i in range(2):

 music.play(['D4:4', 'D4:2', 'G4:3', 'A#4:2',
'D5', 'R','C4:4', 'C4:2', 'E4:3', 'F4:2', 'G4',
'R'])

music.play(['C4', 'C4:3', 'A#4:4', 'A4:2',
'G4:3','R:1', 'F4:5'])

Note: Some of the lines are too long to fit in one in this workbook, you should
not put new lines before finishing the play function. This is true for the code
that follows as well.

Aderyn Melyn

Turtle Art 7

Aims

To start making a turtle program, access this website (it is possible to do this in
IDLE if you have installed Python on your device):

https://www.pythonsandbox.com/turtle

Once on the website, delete any code in the terminal on the left of the screen,
we will be making ours from scratch!

To use the Turtle to make shapes and art for us, we firstly need to import the
turtle library.

import turtle

Importing Libraries and Accessing the Turtle

This is example code for creating
shapes and art via python using the
Turtle Library

The following pages will show two
programs: how to draw a square, and
a how to make a spirograph.

Turtle Art

https://www.pythonsandbox.com/turtle

Turtle Art 8

AimsFirstly we import our library and create variables. The library import allows us
to access the turtle functions, while the variables allow us to edit the type of
turtle we will be using. We will call our turtle ‘pen’ since we are drawing, and
will make it the shape of a turtle, and make it draw in green.

import turtle
pen = turtle.Turtle()
pen.shape(“turtle”)
pen.color("green")

Now we can give explicit commands to our turtle. Commands such as forward
make the turtle move in a straight line, to a set number of ‘units’. We can also
make our turtle rotate either left or right, using degrees.

pen.forward(100)
pen.right(90)
pen.forward(100)
pen.right(90)
pen.forward(100)
pen.right(90)
pen.forward(100)
pen.right(90)

The result will be a turtle which will move in a square for us.

Tip: Think of the turtle as having ‘tank controls’ it can only go forwards or
backwards, and must pivot on the spot to change direction.

Drawing a Spirograph

Turtle Art 9

AimsFirstly we import our library and variables, as we did before.

import turtle
pen = turtle.Turtle()
pen.shape("turtle")
pen.color("green")

Now unlike last time, we will be making a loop to repeat our code multiple times.
We have specified we want our code to repeat 350 times. The variable i will be
used to count up to 350, starting from 1, and increasing my 1 every interation.

This means initially our turtle will only move 1 unit, but it will slowly get bigger and
bigger, moving more and more as the code continues.

for i in range(350):

 pen.forward(i)
 pen.right(98)

The result will be a turtle which will make a spirograph for us.

Why not try tinkering with some of the numbers? What happens if you
change the angle?

Drawing a Spirograph

Pythagoras 10

Aims

To use the Pythagorean theorem to calculate the lengths and angles of a right
triangle we will need to import some functions from the python math library.

from math import sqrt, asin, acos, atan

print('Pythagorean theorem calculator! Calculate
your triangle sides and angles')
print('Assume the sides are a, o and h, where h is
the hypotenuse')

formula = input('Which side (a, o, h) do you wish
to calculate?')

The program begins by printing an explanation of its function, and asking the
user to input which side it should calculate.

Importing Libraries

This is an example code for a
Pythagorean theorem calculator in
Python.

Each page will provide you with the
next step in the program.

Pythagoras

Pythagoras 11

Aims
To calculate the length of ‘a’ (the side adjacent to the angle θ) an if statement
is used to check the chosen user input.

The program then asks the user for the length of sides o and h.

Then the length is calculated using the rearranged Pythagorean theorem.

Using sin-1 the angle theta is calculated.

Both values are printed along with a string describing the value (Note: \n is
used to insert a new line in Python).

if formula == 'a':
 sideO = int(input('Input the length of side o: '))
 sideH = int(input('Input the length of side h: '))

 sideA = sqrt((sideH * sideH) - (sideO * sideO))

 theta = asin(sideO / sideH)

 print('\nThe length of side a is : ' + str(sideA))
 print('\nThe angle given by sin in radians is: ' + str(theta))

Calculating Side A

Pythagoras 12

Aims
To calculate the length of ‘o’ (the side opposite to the angle θ) an elif
statement is used to add a condition to the if statement. The program then
asks the user for the length of sides a and h.

Then the length is calculated using the rearranged Pythagorean theorem.

Using cos-1 the angle theta is calculated.

Both values are printed along with a string describing the value.

elif formula == 'o':
 sideA = int(input('Input the length of side a: '))
 sideH = int(input('Input the length of side h: '))

 sideO = sqrt((sideH * sideH) - (sideA * sideA))

 theta = acos(sideA / sideH)

 print('\nThe length of side a is : ' + str(sideO))
 print('\nThe angle given by sin in radians is: ' + str(theta))

Calculating Side B

Pythagoras 13

Aims
To calculate the length of ‘h’ (the hypotenuse) an elif statement is used to add
another condition to the if statement. The program then asks the user for the
length of sides a and o.

Then the length is calculated using the Pythagorean theorem. Using tan-1 the
angle theta is calculated. Both values are printed along with a string describing
the value.

An else statement is included to ensure that a valid input has been given.

elif formula == 'h':
 sideA = int(input('Input the length of side a: '))
 sideO = int(input('Input the length of side o: '))

 sideH = sqrt((sideA * sideA) + (sideO * sideO))

 theta = atan(sideO / sideA)

 print('\nThe length of side a is : ' + str(sideH))
 print('\nThe angle given by sin in radians is: ' + str(theta))

else:
 print('Please select a side from a, o or h')

Calculating Side C

Nuclear Decay 14

Aims

To simulate the random decay of radioactive nuclei we will need to import
some functions from the python math and science libraries.

from math import log
from random import randint

Libraries can either be fully imported where each function called will also
require the library to be called (using import _),
or specific functions may be imported from a library, which can then be called
directly (using from _ import _).

Importing Libraries

This is an example code for an Exponential
Decay Simulator in Python.

The program will run a random simulation
and output the results, these can then be
plotted in Excel.

Each page will provide you with the next step
in the program.

Random Exponential Decay

Nuclear Decay 15

Aims
To initialise the program the user is asked to input the number of nuclei at the
beginning of the simulation and the probability of a nucleus decaying each
second.

These values are saved as an integer and a float respectively, so that the
number of nuclei must be inputted as a full number where the probability can
take any value.

Some initial values are defined so that the simulation begins at 0 seconds
with the half life unknown (the reason this is required will become clear).

Note: The red lines are comments within the code. Comments in Python can
be added with a #.

Initial Number of nuclei
initialNuclei = int(input('What is the starting
number of nuclei?'))
currentNuclei = initialNuclei

The probability that a given nucleus will decay
probability = float(input('\nEnter a percentage value
for the chance of a nucleus decaying each second i.e.
50: '))

Setting initial values for variables
seconds = 0
halflife = 0
halflifeFound = False

Initialising

Nuclear Decay 16

Aims
The main body of the program consists of a while loop which will run until all
the nuclei have decayed.

Each time the loop runs the number of nuclei remaining is printed and the
number of seconds passed increases.

The for loop runs through each nucleus remaining and generates a random
float number between 0 and 100.

If the random number is smaller than the probability of decay, then the
nucleus decays and the number of nuclei is decreased by 1.

while currentNuclei > 0:

Print the number of nuclei remaining and
increase the time by 1

 print(currentNuclei)
 seconds += 1

Consider each nucleus in turn and decide whether
it decays or not

 for nucleus in range(currentNuclei):
 rand = randint(0,100)
 if rand < probability:
 currentNuclei -= 1

Main Program

Nuclear Decay 17

Aims
As an extension to the main program the half life can be estimated. This is
done within the while loop.

If the number of nuclei remaining is less than half the initial number then an
estimate value of the halflife is taken. So only one value is taken, an and
clause is included to check a Boolean value which is then changed.

The estimate for half life is printed along with the second before to give a
range for when the halflife occurred. This is written outside of the while loop.

Store the value of the halflife when more than
half of the nuclei have decayed

 if currentNuclei < round(initialNuclei / 2)
and halflifeFound == False:
 halflife = seconds
 halflifeFound = True

print('The half life for this sample is between %d
and %d seconds.' %(halflife - 1, halflife))

Half Life Estimate

Nuclear Decay 18

Aims
The values outputted in the Python Shell can be copied into Excel in one by
highlighting them all, copying and pasting in Excel.

Paste the values in column B, so that it plots as the y axis. Further results can
be added in the following columns, to plot multiple simulations.

In column A add the seconds passed from 0. This can be done by entering 0
and 1, selecting both, then dragging the bottom corner.

Select all the data and plot through Insert > Charts > X Y (Scatter).
Add an Exponential Trendline from Add Chart Element to fit the data.
A trendline could be fitted to the average result of many simulations.

Plotting Data

Caesar Cipher 19

Aims

To build a working Caesar Cipher we will need to define the set of symbols
(characters) we will be using and shifting to encrypt our text.

global alpha,bet
alpha = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
bet = 'abcdefghijklmnopqrstuvwxyz'

In this example two variables were created for upper and lower case letters.
However we could include another for numbers, another for punctuation
marks, or alternatively include them all in one large cipher variable!

The variables have been made global so that they can be used in any of the
following functions, avoiding having to pass them to each one.

Defining Variables

This is an example code for a Caesar Cipher
program in Python.

Each page will provide you with a possible
function to implement, increasing the
complexity of the program.

Caesar Cipher

Caesar Cipher 20

AimsThis function will encrypt any plaintext fed into it using key specified and the
global variables.

def encrypt(text,key):
 result = ''

 for letter in text:

 if letter.isupper():
 num = alpha.find(letter)
 num += key

 if num > 25:
 num -= len(alpha)
 result += alpha[num]

 elif letter.islower():
 num = bet.find(letter)
 num += key

 if num > 25:
 num -= len(bet)
 result += bet[num]

 else:
 result += letter

 return result

Note: There is no call or print command in this function - to call and print the
function we could use something like print(encrypt(‘My Plain Text’ , 5))

Encrypt Function

Caesar Cipher 21

AimsThis function will decrypt any encrypted text fed into it using key specified
and the global variables.

def decrypt(text,key):
 result = ''

 for letter in text:

 if letter.isupper():
 num = alpha.find(letter)
 num -= key

 if num < 0:
 num += len(alpha)
 result += alpha[num]

 elif letter.islower():
 num = bet.find(letter)
 num -= key

 if num < 0:
 num += len(bet)
 result += bet[num]

 else:
 result += letter

 return result

Note: There is no call or print command in this function - to call and print we
could use something like print(decrypt(‘Rd Uqfns Yjcy’ , 5))

Decrypt Function

Caesar Cipher 22

AimsThis function will hack any encrypted text fed into it using a brute force
method to run through each symbol in the global variables.

This function contains one extra for loop to try every key possible and then
print out the results.

def hack(text):
 for key in range(len(alpha)):
 result = ''

 for letter in text:
 if letter in alpha:
 num = alpha.find(letter)
 num -= key
 if num < 0:
 num += len(alpha)
 result += alpha[num]

 elif letter in bet:
 num = bet.find(letter)
 num -= key
 if num < 0:
 num += len(bet)
 result += bet[num]

 else:
 result += letter

 print('Hacking key #%s: %s' % (key, result))

Hack Function

Caesar Cipher 23

AimsThis function is an extension task to create a unified menu for the program
with all three functions accessible
.
The function first asks for an input (1, 2 or 3) to choose a function, then asks
for the information needed to run each function.
Note: The encrypt and decrypt functions are run from within the print
command.

def main():
 print('Welcome to the Caesar Cipher!\n')
 program = input('What would you like to do? \n1.
Encrypt \n2. Decrypt \n3. Hack \n')

 if program == '1':
 text = input('Enter the text to encrypt: ')
 key = int(input('Enter the encryption key: '))
 print('\nPlain Text: ' + text + 'Encryption key:
' + str(key) + 'Encrypted Text: ' + encrypt(text,key))

 elif program == '2':
 text = input('Enter the encrypted text to
decrypt: ')
 key = int(input('Enter the encryption key: '))
 print('\nEncrypted Text: ' + text + 'Encryption
key: ' + str(key) + 'Plain Text: ' + decrypt(text,key))

Main Menu Function

Caesar Cipher 24

AimsThis is the remainder of the main menu function.

As the hack function already prints out each iteration as it runs, there is no
need to include it within a print command.
An else statement is included to ensure a valid input is given, then main() is
called so that the main menu loops indefinitely!

Note: main() is called once more at the end, outside of the function, to begin
the program and open the menu!

 elif program == '3':
 text = input('Enter the encrypted text to crack: ')
 print(' \n')
 hack(text)

 else:
 print('MUST ENTER A VALID OPTION BETWEEN 1 AND 3')

 main()

main()

Main Menu Function

