
Python Mathematics

 Teacher Guidance

Curriculum Links 2

Computing:

(PS3) I can use conditional statements to add control and decision-making
to algorithms.

(PS3) I can identify repeating patterns and use loops to make my
algorithms more concise.

(PS3) I can explain and debug algorithms.

(PS2) I can follow algorithms to determine their purpose and predict
outcomes.

Links to Science and Technology AoLE

Mathematics and Numeracy:

Geometry:

(PS3) I can explore and consolidate my understanding of the properties of
two-dimensional shapes to include the number of sides and symmetry.

(PS3) I can demonstrate my understanding of angle as a measure of
rotation and I can recognise, name and describe types of angles.

Algebra:

(PS2) I have explored patterns of numbers and shape. I can recognise, copy
and generate sequences of numbers and visual patterns.

Links to Other AoLEs

Learning Rationale 3

This resource provides opportunities for Critical Thinking and Problem
Solving throughout. Learners are able to recognise potential problems with
algorithms which are not in the correct order and when debugging any
errors they encounter when programming.

Learners are also allowed to show Creativity and Innovation when they are
asked to write algorithms to produce their own shapes and patterns, as well
as experimenting with variables to produce unique patterns.

The Data and Computational Thinking strand of the DCF is also prevalent
with opportunities for learners to understand the importance of the order of
statements, when creating and refining their algorithms. They will be able to
detect errors and use iteration to improve efficiency of their code.

The Four Purposes and Cross-Curricular Skills

This resource allows learners to develop their understanding of geometry
through angles and symmetry of shapes, by allowing them to decompose
the creation of shapes into a sequence of instructions utilising the “turtle”
library in Python. Alongside this, learners can develop their understanding of
programming and debugging algorithms in a modern and popular
programming language before experimenting and exploring how modifying
their algorithms can produce unique outputs in a creative way. There is
opportunity to link this with geography by exploring the flags of countries
which can be produced by sequencing instructions.

Why Is Learning This Important?

Introduction

In this suggested approach we use the following colours to differentiate the
types of activities:

• Yellow - Explain. Teachers should explain the slide/example to the class.

• Green - Discuss. Teachers should start an open discussion with the class to
get them to feedback some answers/ideas.

• Purple - Activity. Students are expected to complete an activity whether it
be in their workbooks or on the computer, followed by a discussion of their
solutions.

• Green - Introduction/Conclusion. The introduction/conclusion is also
colour coded green. Teachers should hand out materials in the introduction
and conclude the session and collect materials at the end.

Suggested Approaches Key

Begin with introductions, and a brief explanation of the Technocamps
programme, before handing out pre-session questionnaires to be filled out
by the students and teacher.

Introduction

We will be learning about geometrical shapes, a topic within Mathematics.
We will also see why we are using Python and we will create programs that
draw geometrical shapes for us.

Explain: Topics Covered Today

4

Introduction

Provide a set of instructions and ask the students to follow the instructions in
the given order to draw an image.

Activity: Draw the Image

Towards the end of the activity, ask the students to describe their image and
check how many students drew the same image.

If there were different images discuss how given the same instructions,
there were differences in results.

Discuss what would happen if the computer was given the same
instructions. Would it have drawn one of the students images?

Discuss: Draw the Image

Programming is telling a computer what to do using a set of ordered
instructions. The set of ordered instructions is called an algorithm. The
language used to tell the computer what to do is called a programming
language.

Unless we give the computer step by step instructions to draw a shape, it
would not know how to draw it. It will follow the instructions in the given
order and the given format.

If it fails to create the expected shape, it is the fault of the instructions
provided and not the computer.

Explain: What is Programming?

5

Geometry Refresher

Ask the students what they remember about symmetry and lines of
symmetry in geometry. Ask if they can name some shapes (2D) which
have lines of symmetry.

Discuss: Lines of Symmetry

A 2D shape is symmetrical if a line can be drawn through it so that either
side of the line looks exactly the same. That line is called the line of
symmetry.

A square, which is a regular polygon, has 4 lines of symmetry. A rectangle
has 2 lines of symmetry. A regular pentagon has 5 lines of symmetry. A kite
and a trapezium have 1 line of symmetry. Some geometrical shapes have
no lines of symmetry, for example a parallelogram.

Explain: Lines of Symmetry

Ask the students about the term angles in geometry and what are the
various angles associated with different 2D shapes.

Discuss: Angles?

6

Geometry Refresher

An angle is formed when two lines meet around their common point. There
are 360o in a full rotation. As the angle increases, the name changes.

Acute angles are those between 0o and 90o

A right angle is 90o

Obtuse angles are those between 90o and 180o

Reflex angles are those between 180o and 360o

One full rotation contains 360o

Explain: Angles

Identify the 2D shapes from their given properties on sides, angles and
symmetry.

Activity: Geometry

We know that programming is about instructing the computer to do what
we want it to do. 
If we want it to draw some shapes for us then we have to provide exact
instructions on how to draw those shapes using sides and angles.

In order to do that we need to use a programming language which the
computer understands to provide our instructions and the computer will
interpret it and covert it into an image.

Clear instructions are essential. If we provide incorrect commands or if the
computer does not recognise a command, it will complain.

Explain: Geometry in Programming

7

Python

Ask the students to write down what they think of when they hear the word
Python.

Activity: What is Python?

Python in a computer science context is not a snake or the Harry Potter
language “Parseltongue”.

Python is a programming language which tells the computer what to do
through the use of algorithms.

Python is free.

Python is easy to learn, read and code in.

Python is interactive and portable.

Python is considered a high level programming language and flexible.

High level means that the instructions are similar to English language
instructions. It is easier to read by a human but not necessarily by the
computer. For a computer to understand a high level language, it uses a
compiler or interpreter to convert the English-like instructions to binary
commands.

The Python language was created by Guido Van Rossum in 1991 and is
being used now more than ever. He liked Monty Python’s Flying Circus TV
series a lot, so named the language after that.

Explain: Python

8

Python

Python has a lot of libraries. A library is a set of commands for a specific
purpose. For example the Turtle library we will be using today has
commands related to graphics. It has the necessary commands to create
some fun mathematics graphics. We will be using these to create some of
the 2D shapes that we have just talked about.

Explain: Turtle Graphics in Python

Assume you are a turtle and you are given two commands:

a) forward x: you can only move forward x steps. E.g. forward 100

b) right y: you can only turn right (clockwise) at y angle. E.g. right 90

Using these two instructions try to draw a square. Remember the angles
between the sides in the square and the number of sides.

Activity: Draw a Square

9

Python

Let us go through the instructions to draw a square using those two
commands:

	 forward 100: move forward 100 steps

	 right 90: turn 90 degrees and wait

This draws the first side of the square.

	 forward 100: move forward 100 steps

	 right 90: turn 90 degrees and wait

This draws the second side of the square.

	 forward 100: move forward 100 steps

	 right 90: turn 90 degrees and wait

This draws the third side of the square

	 forward 100: move forward 100 steps

	 right 90: turn 90 degrees and wait

This draws the fourth side and completes the square.

Explain: Square - Instructions

Now let us convert the instructions to the commands that Turtle library has
and see how it is written.

In Turtle we write these commands using the format command(value). For
example forward(100) instead of forward 100 and right(90) instead of right
90.

Since a square has four sides we repeat the commands, move forward and
turn right, four times.

Explain: Square - The Turtle Way

10

Python Turtle

Now we finally add a couple more lines of code to get our first Turtle
program.

The import keyword tells Python that we are using the specified library and
functions from that library. It is important to have all the import statements
at the beginning of your program.

The functions or the commands provided by the library should be called
using their name dot-suffixed after the module name. In our case we create
a new turtle from the Turtle library and call it pen. It can be called anything
as long as it is not called Turtle (with a capital).

We then use this to call all the functions. Hence we have to use
pen.forward(100). If we call forward(100) without the pen. (pen followed by
a dot) then Python will not know what to do with the command. We then
write all out other commands to draw the square using the pen object.

Explain: First Turtle Program

You will have to open a program called IDLE which is used for Python
programming. Create a new file, copy the contents of the Square program
that is provided for you. Save it as square.py and run the module. Once you
have completed the square program, change the code so that it will create a
rectangle.

Reference programs: Square.py and Rectangle.py.

Activity: First Turtle Program

11

Turtle Commands

Explain: Turtle Commands

Now that we have seen how the turtle library can draw a simple square for
us, let us have a look at some more commands that the turtle library
supports.

Apart from right and forward, it also supports:

	 left(__)	 	 	 	 to turn left (anticlockwise)

	 backward(__)	 	 	 to move backwards

	 color(“colour name”)		 to set a colour for the lines that the turtle 	
	 	 	 	 	 	 will draw

	 fillcolor(“colour name”)	 to fill the shape marked by begin and end 	
	 	 	 	 	 	 fill commands with the colour given

	 begin_fill()		 	 	 marks the start of the area to be filled

	 end_fill()	 	 	 	 marks the end of the area being filled

Explain: Turtle Commands

Using the commands that were listed, let us modify the program that draws
the square to add some colours. This program will draw the square using
the colour yellow and fills the square in green.

We have to ensure that we give the begin_fill() command to mark the
starting point of our shape and end_fill() command to mark the end point
of our shape.

If we give the begin_fill() command without the end_fill() command or vice
versa it will not fill the shape with colour.

Explain: Square with Colours

12

Turtle Commands

Let us modify the square program to draw the square with red lines and fill it
in green.

We need to use the color(), fillcolor(), begin_fill() and end_fill() commands to
achieve this. Once that is completed, we can modify the rectangle program to
draw the rectangle with orange lines and fill it in purple.

Reference Program: SquareWithColour.py

Activity: Colour the Shapes

Here is a scenario:

I want to draw a square in red and fill it with green. I move my turtle forward
once the square is drawn and then draw a rectangle next to my square in
black and fill it with blue. In between the square and the rectangle I see a
red line. Why do you think that is?

Discuss: Pen Commands

13

Turtle Commands

When we are drawing on paper, the pen/pencil is down on the paper. When
we have to draw two squares next to each other, we draw a square, lift the
pen/pencil up, move it a little further across the paper and then place the
pen/pencil down and start drawing again.

In our turtle programming, by default the pen is down as it has to draw the
lines when moving forward and backward.

When we finished drawing the square the pen was still down when we
moved forward to draw our rectangle and since the square was drawn
using red colour the line was also in red.

We could solve it by using the penup() and pendown() commands. Once
the square is complete, we call the penup() command, move forward and
then call the pendown() and start drawing the rectangle. This avoids the red
line between the two shapes.

Note the lines with #, these are called comments. These are used for us
humans to understand what we doing in the program and for anyone
reading our code. Python will ignore these lines as they don’t mean anything
to it. It is good practice to write comments whilst writing any code.

Explain: Penup and Pendown

14

Turtle Commands

Let us use the penup and pendown commands to draw two shapes of your
choice next to each other with some space in between them. You can use
colours of your own choice to fill them too.

Reference Program: TrianglesWithPenCommands.py

Activity: Pen Exercises

Let us use the commands we have learned so far to draw one or more of
these lifeguard flags or a flag of the world.

On a good day when you go to the beach, you will see one or more of these
flags in the area to indicated the swimming section and where the lifeguards
are on duty.

Choose one or more flags and program the turtle to draw them for you.

Activity: Fun Flags

Reviewing our first Square program in Turtle, we can see that there are
some commands that get repeated more than once.

For example the commands forward(100) and right(90) are written once
and then repeated three times to complete the square.

This process is called iteration.

Explain: Repeating Instructions

15

Iteration

Iteration is the process where one or more steps are repeated more than
once. This process is also known as looping.

There are various types of loops. We are going to be looking at loops or
iterations which are based on a specific range. In other words, loops where
the steps or commands are repeated a specific number of times.

Explain: Iteration

We are looking at For loops in Python which allow you to repeat a set of
instructions a specified number of times.

An example of how we translate our Square program using loops can be
seen in the slides. The lines in green are rewritten using iteration.

Explain: For Loops

16

Iteration

A for loop consists of the following format:

for <loop variable> in <iteratable>:

	 	 	 <loop body>

In our session, we will be looking at range(<begin>, <end>, <stride>). The
stride indicates the amount to skip between values. For example, range(2,
10, 2) will result in a list of numbers starting from 2 and ending in 10, but
each number step will be 2. So the resulting list will be 2, 4, 6 and 8. The
<end> number is not included in the list.

For simplicity, we will use the easiest form of range which is range(<end>).

Note: if <begin> value is not specified it will start with 0 and if <stride> value
is not specified it will default to 1.

In our example, range(4) would result in the loop variable taking values 0, 1,
2 and 3 thus executing the statements in the body of the loop four times.

Ensure that the for and in keywords are not missed.

The loop variable is any variable name which can be used as the counter
variable for the loop. We usually use i as the loop variable as “i” indicates the
index of the counter. The loop body is any set of commands which needs to
be executed iteratively one or more times.

Explain: Dissecting the Loop

17

Iteration

It is also important to ensure that the loop body is indented by a few spaces
(use tab). Python identifiers the loop body by the indentation. If the
indentation is missed, Python will not be able to recognise the loop body
which will result in the syntax error “expected indented block” during
runtime.

Explain: Indentation in Loops

A couple of programs are provided where the instructions/commands are
repeated more than once. The students have to go through the program and
replace the repeated set of commands with a for loop that has been
discussed earlier.

Reference Program: SquareWithLoops.py

Activity: Let’s Loop

A sample program which uses all the commands of the Turtle that have
been discussed so far (movement commands, pen commands, colour
commands and the for loop) should be shown. This program draws three
octagons next to each other to form a pattern. Each octagon is drawn using
a loop.

Explain: The Three Octagons

18

Iteration

We ask the students to create some designs like the three octagons using the
commands learnt so far.

Reference Program: ThreeOctagons.py

Activity: Loopy Designs

As an extension to the for loops, it is also possible to use the loop variable
used in the definition, in the loop body and create some designs. An
example program and its output are shown. Alternatively, we can also run
the LoopitWithVariable.py and show the live example of the program.

Explain: Loop it with a Variable

We ask the students to create some designs using the loop variables in the
loop body just like the one shown in the previous slide. We can also show the
previous slides example for their reference.

Extension Activity: Loop it with a Variable

19

Angles

An exterior angle is the angle outside the polygon made by extending one
of the sides. The sum of all exterior angles is 360o. How did we arrive at
360o?

If we were to place a pencil horizontally along the side of the polygon and
then begin rotate it around the shape, following the sides, we would notice
that the pencil completes one full rotation by the time we return to the
original position.

We know there are 360o one full rotation (a circle) so the sum of the
exterior angles must be 360o as well.

Explain: Exterior Angles

20

We shall quickly revise some of our regular 2D polygon shapes. Each of
these shapes, triangle, square, pentagon etc., have a different number of
sides. They range from 3 — 10 sides. What about their angles? There are
two types of angles for any regular 2D polygon: Interior Angles and Exterior
Angles. We will do a quick review of the angles in the next few slides.

Note: We will be looking at only regular polygons for our exercises.

Explain: 2D Shapes

Angles

All the interior angles of a regular polygon are equal, hence all the exterior
angles will be equal too. If we want to know the size of each exterior angle,
then we use the formula 360o / number of sides. Since the total sum of all
exterior angles is 360o, we can get the size of each individual exterior angle
by dividing 360o by the number of sides.

Explain: Size of Each Exterior Angle

Where do we apply these exterior angles? Let us assume that we start a car
and that the car travels in a square for full rotation, turning four times. For
each turn, the angle of turn would be 360o/4 = 90o.

Explain: Applying Exterior Angles

Now that we know the interior and exterior angles for each of the regular 2D
polygons, let us complete the given table by identifying the 2D polygon and
filling in the number of sides, the total sum of exterior angles and the size of
each exterior angle for each of the given regular polygons.

Activity: Angles

Let us go through the shapes and their exterior angles. Can we rewrite our
Turtle program to create any or all of these 2D shapes based on their
number of sides?

Discuss: Angle Facts

21

Angles

In order to automate the 2D shapes based on the number of sides, we need
to ask the user the number of sides and store that in a variable. The loop
will iterate for the given number of sides. We will also use that variable in
our calculation of our exterior angle in the loop body which is 360o /
number of sides.

A sample program which automates the angles is shown and the key
commands that are used to in the automation are highlighted. The first key
command is an input command which is used to accept the number of
sides from the user and the value is stored in a variable called sides.

Explain: Automate the Angles

input() is a command used to ask the user a question and we can then use
the answer in the Python program. The structure of the input commands is
input(<question>). If the question is missed, then Python will wait for the
user to enter the data without displaying any information.

It is always good practice let the users know what the input is about. Any
input given by the user will be in a text format, even if they enter a number!
If we want to use the answer/input provided by the user, we need to store
that information in a variable.

Since the input provided by the user is in text format, we cannot use it
directly in our mathematical calculations. We need to convert them into
numbers before we can use the formula 360o/number of sides. In order to
do so, we can use the int() function which is an integer function which takes
data in text format and coverts it to data in number format.

Explain: Input and Variables

22

Angles

A screenshot of what the input() function does when the Python program is
run is shown so that the students can see how the program works and
what screen they should use to enter the number of sides.

Alternatively, we can use the AutomatedShapes.py program to show a live
demonstration of the same commands.

Explain: How Does It Work?

A screenshot of the result of the AutomatedShapes program is shown
along with the prompt screen where the user has entered the number of
sides. This slide is shown to emphasise that there will be two windows in
cases where there is an input involved. When the turtle program is
executed/run, apart from the prompt window it will also open a drawing
window. The user has to ensure that the give the input in the prompt
window so that the required shape will be drawn on the drawing window.

Explain: Result

The code similar to that used to do the automate shapes from the previous
slides is given but is jumbled up. The students have to rearrange the code in
the correct order based on what we have learned so far.

Activity: Draw Any Shape

23

Conditionals

As an extension to the automated shapes, add another input which asks the
user for the desired colour of their shape. Store the colour in a variable called
usercolour and use it in the fillcolor() command.

Extension Activity: Colour the Shape

We have seen a series of statements executed in a sequence and also a
sequence of statements executed in an iteration. What if we want to change
the flow of how the program works? For example, if we want to change the
order of execution of a command based on a condition. In such cases we
use conditionals.

We use conditions in day to day life all the time. For example, if it is raining
outside then take and umbrella. In this example, the action of taking an
umbrella is based on the condition of raining.

Here is another example. If my homework is completed then I play games
on my Xbox else I sit and complete my homework. In this example, if the
condition of completion of the homework is true, then the person can go
play on their Xbox, but if the condition is false, i.e. if they haven’t completed
the homework, then they have to go and complete it.

Apart from specifying what should be done in the case that the condition is
met, we have also specified what should be done in the case that the
condition is not met. In any conditional there can be only two outcomes:
True or False.

Explain: Conditionals

24

Conditionals

How do we write conditional statements in Python? The format is as
follows:

if (condition):

	 	 	 then do these things if the condition is True

else:

	 	 	 then do these things if the condition is False

The indentations of the True conditional statements and the False
conditional statements are important just like we did it in the loop body of
an iteration. If we do not do the indentation, then Python won’t know which
statements belong to True condition and which belong to False.

In our example of automating the shapes, if the user gives the input as 4
sides, we have to decide if we want to draw a square or a rectangle as both
of them have 4 sides. To achieve that, we ask the length of two sides in two
variables and use them to draw the 4 - sided shape.

Explain: Python Conditionals

The conditional statement is written after the keyword if. The condition is
any expression that can result in a True/False outcome. It is important to
ensure that the condition ends with a colon (:). The condition is followed by
the statements that need to be executed in case the condition is True and
these should be indented.

The conditional else just has the keyword else followed by the colon (:). This
is then followed by the statements that need to be executed as part of the
False outcome of the condition.

Explain: Conditionals

25

Conditionals

The automated shape program is enhanced to use conditionals. If the user
input is 4 then we ask the user to input side1 and side2 and draw a square
or rectangle using the two sides given. But if the user input is not 4 then we
use the formula 360o/sides to draw the shape.

What would happen if side1 and side2 are set to the same value?

Turtle would draw a square. If side1 and side2 are set to different values
then Turtle would draw a rectangle instead.

Ensure that the indentations are in place.

Explain: Using Conditionals

Reorder the automated shapes program to add the conditions that were
discussed.

Reference Program: AutomatedShapesWithConditions.py

Activity: Conditional Shapes

26

Stamps

Explain: Stamp

When we look at post (not that we use it much anymore, maybe except
during Christmas or other such festivals) we see various stamps on them.

These stamps tell us a tale. They tell us where our post has been. For each
of the different places it has been (mostly different countries) there will be a
stamp on it giving us the route it has travelled.

In Turtle programming, when the turtle is moving forward or backward it
doesn’t leave any footprints. We don’t know where the turtle has been. If we
want to know the route the turtle has taken, we need to use stamps.

Stamping leaves an impression of the turtle on the screen and it works
even when the pen is up (i.e. not in drawing mode). We need to use a
command called stamp(). A simple example using stamp is given. This
creates a square shape with a turtle stamped at each corner.

Explain: Stamp

A sample code has been given which the students can modify to create
random shapes and also create stamps of the turtle on the screen for each
shape.

Reference Program: SquareWithLoopsAndaStamp.py

Activity: Stamp the Turtles

27

Stamps

We come to the end of our workshop. Before we do a final program, let us do
a quick review of what we have learnt today and see if we can update the
worksheet by identifying the correct lines of the program for the given
concept.

Activity: Turtle Review

28

As part of our first activity of the day, the starter activity, the students were
asked to draw an image based on a series of instructions. Students “should”
have drawn an image of a very simple house. 
That activity used only simple geometrical 2D shapes to create the house.
Now students should use their Turtle programming knowledge to write a
program which draws the house for them.

We need to ensure that we give correct and clear commands for the turtle to
draw.

Activity: The House

Developing and Differentiating 29

• Opportunity to challenge learners by suggesting more difficult country
flags to recreate.

• It may be of use to provide some learners with the code whilst giving
others snippets of code to be assembled while others need to use what
they have learnt in prior activities to write algorithms without any code
provision.

• Most programming environments allow customisation of the user
interface and other accessibility features to support all learners.

Differentiating for Learners

• Opportunity to teach functions in Python, for example, defining a function
to draw any regular polygon by inputting a number of sides.

• Another example could be defining a function for drawing a house, and
then repeatedly calling the function to draw a row of houses. The
functions could allow input of arguments to control the size and number
of houses in the row.

• A follow-up task would be to ask pupils to create a drawing with multiple
shapes, asking them to demonstrate and reflect on the benefits of
compartmentalising the code for individual shapes.

Where To Go Next

