
Assembly Language
 Workbook

Learning Outcomes 2

In this workshop we will be looking at Assembly
Language, from studying computer architecture to
learning how to write assembly programs of varying
complexity.

1. Improved knowledge of different
Computer Architectures.

2. Greater experience of designing,
writing and using Algorithms in
Assembly Language environments.

3. Improved knowledge of Number
Sequences.

Overview

Learning
Outcomes

Attendee
Prerequisites

1. No previous knowledge of Assembly
Language programming required.

Computer Architecture 3

Von Neumann Architecture

What is an Assembly Language?

Which laptop do you prefer? _____________________________________

Why do you prefer that laptop?

__

__

Surface Pro 5 vs. MacBook Pro 2017

Describe the difference between volatile and non-volatile storage as well as

giving an example of each.

__

__

Volatile: ___________________________

Non-Volatile: ___________________________

Put these memory amounts in order from smallest to largest: Bytes, Bits,

TerraByte(TB), MegaByte(MB), GigaByte(GB), PetaByte(PB), Nibble,

KiloByte(KB)

Memory

Computer Architecture 4

Choose one of the options on the board, find the items online and compare

their tech specs. Then give detailed reasons why one is better than the other.

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

Compare Technology

Von Neumann 5

Von Neumann Architecture

What is an Assembly Language?

Can you name each part of the diagram?

A. ___________________

B. ___________________

C. ___________________

D. ___________________

E. ___________________

F. ___________________

Von Neumann Architecture

Von Neumann architecture is ______ flexible than Harvard architecture

because ___

__

__

__

__

__

__

Flexibility

Assembly Language 6

Von Neumann vs Harvard

This stores both instructions and data
within the same memory addresses
and uses the same bus for both.

This has separate memory addresses
for instructions and data meaning it
can run a program and access data
simultaneously.

Assembly/Low-level languages are:

__

__

__

When are Assembly/Low-level languages useful?

__

__

__

What is an Assembly Language?

7Little Man Computer

• _______________________ - This shows which type of instruction is being
used and which memory address it is being used on.

• _______________________ - This is like the active memory of the simulator.
The majority of our instructions will modify the contents of the
Accumulator.

• _______________________ - This is where a value is copied to from the
Accumulator to display to the user.

• _______________________ - This shows the current memory location that the
processor is running.

• _______________________ - This is where user inputs are stored initially
before being copied to the Accumulator.

• _______________________ - These are the RAM addresses which are used to
store instructions and data.

Fill in the Blanks

Visualising Assembly Programs 8

Assembly Language Functions

Function LMC
Mnemonic

LMC
Code What does it do?

Input INP 901 Copies the value inputted by the user into
the Accumulator.

Output OUT 902 Copies the value in the Accumulator into
the Output box.

Halt HLT 000 This instruction does not affect any of the
memory locations and stops the program.

Visualising a Program Running

Visualising Assembly Programs 9

Assembly Language Functions

Function LMC
Mnemonic

LMC
Code What does it do?

Store STA 3 _ _

Copies the value from the Accumulator
and places it in an allocated memory
location referred to by the variable name
given.

Load LDA 5 _ _
Copies the value stored at the memory
location, given by the variable, into the
Accumulator.

Data DAT
Reserves a memory location to store data.
This location can be referred to by the
given variable name.

Visualising a Program Running

10LMC Activities

Notes:
1. Create a program which takes in and stores two inputs from the user

and outputs the first input followed by the second input.

2. Create a program which takes in and stores four inputs from the user
and always outputs the third input to the user.

3. Create a program which takes in three inputs and outputs them in
reverse order.

Storing and Loading

1. Create a program which takes and stores in two inputs from the user
and outputs the sum of them.

2. Create a program which takes in three numbers and stores them and
then outputs the sum of the first two numbers with the third subtracted.

Addition and Subtraction (1)

1. Create a program which takes in a number, doubles it and outputs the
result.

2. Create a program which takes in a number and multiplies it by eight.

Challenge - Create a program which takes in a number and multiplies it by
forty.

Addition and Subtraction (2)

11LMC Activities

1. Create a program which allows the user to input numbers indefinitely
and outputs each number.

2. Create a program which allows the user to input numbers indefinitely
and outputs the running total after each entry.

Looping

In Little Man Computer we don’t have “if statements” like we have in Python
for comparisons. The only way to branch based on a condition is to do a
subtraction and then branch based on the result.

Comparing Values in LMC

12LMC Activities

1. Create a program which allows the user to input two numbers and
outputs the smallest number. Hint: if you do a - b and the number is
positive, then a is bigger than b.

2. Create a program which allows the user to input two numbers and
checks if they’re equal. Only output the number if they are equal.

3. Create a program that repeatedly takes in inputs and only outputs them
if they are zero.

4. Similar to 3, create a program which outputs everything except zeroes.

Conditional Branching

In order to calculate the equation for a given sequence of numbers we
must first look at the difference between them e.g.
Index term: 1 2 3 4 5

Number: 3 , 5 , 7 , 9 , 11

The difference between each term is + 2.
So the number in front of the nth term in our equation must be 2, i.e. 2n.
If we try inserting the index term into our nth term equation 2n does the
answer match up correctly? 2 x 1 = 2
What should be add to correct this? + 1
Therefore our equation is: 2n + 1

Sequences (Mathematics GCSE)

+2 +2 +2 +2

13Sequences

For the following sequences:
a. Write out the nth term equation.
b. Calculate the 20th term in the sequence

1. 7, 8, 9, 10, 11 …

2. 3, 6, 9, 12, 15 …

3. 12, 17, 22, 27, 32 …

4. -6, -2, 2, 6, 10 …

5. 3, -3, -9, -15, -21 …

6. a. Write out the first 5 terms of the sequence given by 3n - 7.

 b. Calculate the 15th term of the sequence.

Sequences

14LMC Sequences

How to Implement This?

Now we’re going to implement this nth term equation in LMC to produce the
first 5 terms in the sequence: 5, 6, 7, 8, 9 …

How to Implement This?

15LMC Sequences

You can use this code as a starting point for
creating your own sequences. What would we
change in order to make the sequence n + 8?

Creating Your Own Sequences

For the following sequences, write down the first 5 terms and then write down
the specific term in each question:

A. n - 7: First five terms: ___

 12th term: __

B. 2n + 4: First five terms: ___

 15th term: __

C. 2n - 6: First five terms: ___

 11th term: __

Creating Your Own Sequences

16Advanced LMC Activities

1. Create a program which take in inputs and outputs the positive value, i.e.
if it’s negative, you output the positive, -3 would output 3.

2. Create a program which take and input, outputs that value and then
counts down and outputs every value until it reaches 0 (or counts up to -
if the value is negative).

3. Create a program which takes two inputs and checks if they have the
same sign (both positive or both negative). If they have the same sign
output a zero, otherwise output a one.

4. Create a program which takes two inputs and returns the remainder if
you divide the first input by the second. (Don’t worry about negative
numbers, but dividing zero by a number and dividing a number by zero
should be considered.)

Advanced LMC

Create a program which takes in an input and outputs all of the numbers in
the Fibonacci sequence up to that input number.

The Fibonacci sequence is 1, 1, 2, 3, 5, 8, 13, 21 …

You can set one variable to 1 at the beginning to help. No cheating!

Very Advanced LMC

17Notes

Notes

