

Greenfoot

Computers vs. Humans

Discuss for 30 seconds and come up with an answer. Yes or no?
Why?

Computers vs. Humans

Discuss for 30 seconds and come up with an answer. Yes or no?
Why?

They are certainly quicker, and they can’t make mistakes but
there is nothing a computer can do that humans can’t.

All we need to do to solve problems like a computer, is to think like
a computer.

This is called Computational Thinking.

Activity: Follow These Instructions

You’ll need a pen and paper for this task. You are going to be
given instructions which you’ll need to complete.

You are not allowed to ask any questions or discuss with anyone!

Activity: Follow These Instructions

You’ll need a pen and paper for this task. You are going to be
given instructions which you’ll need to complete.

You are not allowed to ask any questions or discuss with anyone!

You’ve all drawn perfectly good houses, right?

What went wrong? Whose fault is it? Is it your fault? Is it your
teacher’s fault? Is it my fault?

Why?

Would This Work Better?

Year 6 pupil’s suggestion:
“Just tell everyone to draw a house!”

So what would a computer have done?

A Good Quote

"The computer is incredibly fast, accurate, and stupid. Man is
incredibly slow, inaccurate, and brilliant. The marriage of the two
is a force beyond calculation.” – Leo Cherne

Computers are everywhere but people do not understand how to
use them for everyday tasks.

My recent examples:
• Simple python program/Excel formula for adding “;” to the end

of Email addresses
• Booklet arranger which calculates how to rearrange pages for

making A5 style-booklets.

Programming Paradigms

Programming Paradigm is a style or way of programming.
There are different ways or styles of programming.

Procedural Programming: Python
Event-driven Programming: Scratch
Object-Oriented Programming: Java

Procedural Programming

Object-Oriented Programming

Sequential vs. OOP

Object-oriented programming is a way of programming which is
slightly different to Python.

It is structured differently to Python’s sequential way of coding.

Java models solutions based on real world scenario. It uses
Classes and Objects.

Does anyone know what these are? Has anyone used them
before?

Why Java?

Java as a programming language is in high demand throughout
the business industries.
Object-oriented programming model is widely used in the
industry, be it the cloud, server or embedded industry.

Junior Java Software Engineer
Priocept - London
£18,000 - £35,000

Java Developer
Rated People - London

£50,000 - £60,000

Java Developer
Acorn Recruitment - Swansea

£35,000 - £50,000

Java Developer
Thecitysecret Ltd - Richmond

£40,000 - £50,000

https://www.indeed.co.uk/rc/clk%3Fjk=deda0e9f78c2e33e&fccid=bbaea171f68d4db3
https://www.indeed.co.uk/company/Rated-People/jobs/Java-Developer-8f356576caf9c862%3Ffccid=e0278ebca4959fe1
https://www.indeed.co.uk/rc/clk%3Fjk=89679c84461e3e88&fccid=1e8268e0b41349d6
https://www.indeed.co.uk/company/thecitysecret-Ltd/jobs/Java-Developer-8d9aae99b4dee472%3Ffccid=ea43aa2bcf0e9133

Ice cream!!!

Class:

A sweetened frozen food,
usually made from milk,

typically eaten as a
dessert.

Objects:

Vanilla Ice Cream
Chocolate Ice Cream

Mint Choc Chip Ice Cream
Salted Caramel Ice Cream

Class and Objects

A Class describes the contents
of the objects that belong to it:
it describes the properties and
the operations/behaviour.

An Object is an element of a
class; objects have the
behaviours of their class. The
object is the actual
component.

Class: Student

Imagine I had a class called
Student, what properties does
a student have i.e. what
makes a student a student?

Class: Student

Imagine I had a class called
Student, what properties does
a student have i.e. what
makes a student a student?

Student:

Name
Age

Grade

Class: Student

Apart from the properties,
what can a student do?

Student:

Name
Age

Grade

Class: Student

Apart from the properties,
what can a student do?

Student:

Name
Age

Grade
doHomework()

play()

Student Class and Objects

(Class)Student:

Name
Age

Grade
doHomework()

play()

Tom
11
7

Student Class and Objects

(Class)Student:

Name
Age

Grade
doHomework()

play()

Tom
11
7

Casey
13
9

Student Class and Objects

(Class)Student:

Name
Age

Grade
doHomework()

play()

Tom
11
7

Casey
13
9

Luke
12
8

Student Class and Objects

(Class)Student:

Name
Age

Grade
doHomework()

play()

Tom
11
7

Casey
13
9

Luke
12
8

Objects

Activity: Identify Class

What Class do these Objects
belong to?

Apple Mac Pro

Microsoft Surface Pro

Dell Inspirion 15

Lenovo Yoga

Activity: Identify Class

What Class do these Objects
belong to?

Laptops

Apple Mac Pro

Microsoft Surface Pro

Dell Inspirion 15

Lenovo Yoga

Activity: Identify Objects

Identify the Objects that belong to the Class MobilePhones

Motorola G7
PS4

Apple iPhone X
Canon 70D

Huawei P30 Pro
Samsung Galaxy S5

X-Box

Activity: Identify Objects

Identify the Objects that belong to the Class MobilePhones

Motorola G7
PS4

Apple iPhone X
Canon 70D

Huawei P30 Pro
Samsung Galaxy S5

X-Box

Inheritance

What do you think inheritance means in terms of classes?

Inheritance

Inheritance in Java is a
mechanism in which one
object acquires all the
properties and behaviours of a
parent class. It is an important
part of an Object-Oriented
programming system.

BOX
Properties

Side length
Color

FilledBox
Derived Properties

Side length
Color

Special Properties
Fill

FillColor

Side length = 3.5
Color = Yellow

Fill = No

Side length = 4
Color = Yellow

Fill = Yes
FillColor = Dark Grey

Objects

Inheritance

Student:

Name
Age

Grade
doHomework()

play()

Inheritance

Student:

Name
Age

Grade
doHomework()

play()

CS Student:

convertToBinary()

Inheritance

Student:

Name
Age

Grade
doHomework()

play()

CS Student:

convertToBinary()

French Student:

translateToFrench()

Sp
ec

ia
lis

e

G
en

er
al

ise

Activity: Identify Class and
Subclasses

Set 1:

Mobile Phones
Satellite Phones
Phones
Landline Phones

Set 2:

Tablets
Laptops
Desktops
Computers

Activity: Identify Class and
Subclasses

Class: Phones

Subclass:

Mobile Phones Landline Phones
Satellite Phones

Class: Computers

Subclass:

Desktops Tablets
Laptops

What is Greenfoot?

Greenfoot is an introductory visual programming environment
using the Java programming language.

It is a great language to learn and incorporates a textual
experience of programming, providing users with great initial
programming knowledge and understanding of basic principles
of Object-oriented programming.

One of the benefits of using Greenfoot for an introduction into
programming is not only the helpful guides and tutorials available,
but also the colourful user friendly interface.

http://www.greenfoot.org/download

Greenfoot Version 2.4.2

The version we will be using is Greenfoot Version 2.4.2 in order to
make sure we’re all on the same page and have the same
methods/functions available to us.

World and Actor

All the world's a stage,
And all the men and women merely players;

- As you like it, William Shakespeare

Greenfoot has two main classes:
a) World: A world where all actors live and interact. Every

instance of the World is different, e.g. Jungle, Space, Sea etc.
b) Actor: An object of the Actor exists in the World. Each actor

has its own characteristics and behavior. E.g. Predator and
Prey objects in a Jungle, Aliens and Astronomer objects in
Space, and Fish and Shark objects in Sea.

A Scenario in Greenfoot is equal to Object(s) of Actor Class +
World Class + Programming rules.

Activity: Actors and World

If we look at Super Mario for
example, which parts are the
Actors and which parts are the
World?

Discuss with a partner which
objects are part of the Actor
class and which objects are
part of the World class.

Greenfoot Coordinate System

X,Y 0 1 2 3 4 5 6 7

0 0,0 1,0 2,0 7,0

1 0,1 ..

2 0,2 ..

3

4

5

6

7 0,7 7,7

Y

X

Activity: Starting Greenfoot

First create a scenario:
1. Click on ‘Scenario’ on the top left and then ‘New Scenario’.
2. Name Your Program. Do not call your Scenario “Greenfoot”!

Activity: Starting Greenfoot

This creates a folder containing the project file and anything we
create will also be saved automatically in this folder.

Activity: Creating a New World

When the Greenfoot window
opens it should look like the
image shown.

To create our world:
1. Right-click on ‘World’
2. Select the option ‘New

subclass’ and name that
subclass. (We always start
with a capital letter and
capitalise the first letter of
each new word, never with
spaces)

Activity: Creating a New World

3. Choose the ‘Cell’ image

Activity: Changing Your World

Now change your ‘World’ by changing the number of ‘cells’ or
‘grids’ in our program. To do this:
1. Right-click on your ‘World’ subclass i.e. ‘MyFirstWorld’
2. Click ‘Open editor’

Note: Whenever you change the code in your subclass, do not
forget to click on the ‘compile’ button to update the changes.

Activity: Changing the Grid

Currently as default the ‘World’ contains a ‘grid’ of 600x400 with a
size of 1x1 (which translates to a lot of cells, but with a very small
size).

Change it so that it is 8x8 cells, that is to say it should contain 8
rows and 8 columns, and each cell has the size of 60x60 pixels.

Your Program Should Look like
This:

Actors

Objects of the class ‘Actor’
can be placed into your
‘World’. Objects like:
• Main characters: hero,

man, woman...
• Animals: rabbit, wombat...
• Collectables: flower, ball...

To start let us create a
subclass:
1. Right-click on the ‘Actor’
2. Select the option ‘New

subclass’

Adding Our Actor (MainCharacter)

To add our actor to the world we will need to program inside our
‘World’ subclass.

We can use the documentation to help us.

Greenfoot Documentation

Documentation is what we call the material that provides official
information or evidence about the language i.e. Greenfoot.

This documentation also covers how you use different methods and
what kind of inputs go inside them. These methods are things like:

‘move()’
‘turn()’

‘removeTouching()’
‘setRotation()’

The Greenfoot Class Documentation can be found as shown on the
next slide.

To Find the Documentation

Activity: Creating Our ‘Actor’
(MainCharacter)

To do this we simply write in our World subclass:

MainCharacter frog = new MainCharacter();

The above line of code means that we are making a new object
called ‘frog’. This ‘frog’ is a new MainCharacter which is why we
use the equals symbol.

Important Note: For naming Objects, we use camelCase notation
i.e.

‘frog’ or ‘thisIsMyObject’

Java Syntax

Syntax is what we call the structure of statements in a language.
In Java we have to finish most lines of code with a semi colon ;
Without this the file cannot be compiled (translated for the
computer to understand.)
Greenfoot rather helpfully highlights any syntax errors in your
code.

Another Possible Syntax Error

Can you work out what this error means and why it happened?

Java Syntax

{ } Braces (or Curly Braces) are very important in Java. They
are used to group statements and declarations.

[] Brackets (or Square Brackets) are used for indexing a list.

() Parentheses are used to control the order of operations in
an expression and to supply parameters to a method or
function.

Java Syntax

// Double slash is used for single line comments in Java.

/*
* Multiple line comments in Java.
*/

; Every statement in Java ends with a semi-colon.

Naming Conventions

Class: Class names should always start with uppercase.
E.g. MainCharacter

Object: Object names should always start with lowercase.
E.g frogConsumer

Variable: Variable names should start with lowercase and
should then use camel case. E.g. scoreCounter

Constant: Constants should be named using upper case.
E.g. MAX_LIFE

Filename: Java/Scenario file names should start with
uppercase and continue with camel case.
E.g. GameOfLife.java

Activity: Adding Our ‘Actor’
(MainCharacter)

To add our frog to the world, use the Greenfoot method
‘addObject()’.

This method is already pre-built into the Greenfoot program which
can be found in the ’World’ category of the Greenfoot Class
Documentation website.

To open up the ‘World’ subclass (MyFirstWorld) program window,
all we have to do is right-click the subclass (MyFirstWorld) and
select ‘Open Editor’.

Activity: addObject()

We can find out how to use this function in the Documentation.

As you can see, it requires 3 arguments (values) inside the
brackets, what do you think these are?

Try adding the frog to your World.

Activity: Changing The Frog’s
Position

It is unlikely your frog would have appeared in the very top left
square of the grid.

What values would you have to put into the addObject() function
to achieve this?

What about the bottom right corner?

And the other two corners?

Changing The Frog’s Behaviour

Methods are functions specific to the class, for example a class
Dog may include methods such as bark() and fetch().

Other Animal subclasses may not have the same methods, i.e. a
Fish class would not have the same methods as they do not
behave in the same way (not even a Dogfish!).

In order to change the frog’s behaviour we need to program in
the ‘Actor’ subclass and inside the ‘public void act()’ method.

If – Else Statements

If statements are used in programming in order to make decisions.
If something is true a piece of code is allowed to run, if it is not true
then it will not run.

General example:

If you are wearing a jumper, raise your hand.

We can extend this to include an ‘Else’ as well:

If you are wearing a jumper, raise your hand. Else, stand up.

Greenfoot-Specific Example

What do you think this Greenfoot code does?

What about this?

Controlling the Frog with the Arrow
Keys

The setRotation() method allows you to tell the object which way
to face.

Using these values inside the setRotation() method will make the
frog face the associated direction.

Right = 0ᴼ Down = 90ᴼ Left = 180ᴼ Up = 270ᴼ

Activity: Program the Actor to
Move Using Arrow Keys

Useful code:

Hint: You can use multiple if statements inside the act() method of
the MainCharacter, one below the other.

Greenfoot.isKeyDown() ”up” , “down” etc.

setRotation() 0, 90, 180, etc.

move() 1 = 1 square, 2 = 2 squares

Activity: Adding Collectables

Just as MainCharacter is a subclass of Actor, we want to add
another subclass to be a collectable in our game.

Again we need to:
1. Create a new subclass of

Actor and name it
‘Collectables’

2. Choose the fly image
from the animals
category

Adding Collectables to the World

Can you remember how to add an object of type Actor to the
World?

Add a Collectable to your World.

Hint: First you have to let the World know that you’ve instantiated
a new Actor class called Collectables. Try adapting this:

MainCharacter frog = new MainCharacter();

You will also need to think of a name for this new object.

Activity: Add 3 Collectables in
Various Positions

Using different names, fly1, fly2, fly3, create three more
‘Collectables’ objects.

Note: You do not need another ‘Actor’ subclass. You only need to
code three more ‘Collectables’ objects in the ‘World’
programming window.

Activity: Frog Eating Collectables

Now we need to write code for when our ‘MainCharacter’ eats
our ‘Collectables’.

We need to use the methods:

isTouching(Collectables.class)
removeTouching(Collectables.class)

What do you think these do? Where should we place them?

Once completed, play your program to test that it works.

Activity: Adding a Sound

To make this a little more exciting, we will add a sound.

The method:
Greenfoot.playSound(“filename goes here”)

will play whichever sound file is named as a string.

You should have a file named pop.wav available to be used
which will need to be saved in the sounds folder for your project.

Where should you put this method in your code?

Sound File available:
http://bit.ly/GreenfootPop

Activity: Randomly Moving
Collectables

There are a few ways to do this but all will require the use of
random numbers.

The method:
Greenfoot.getRandomNumber(4)

will return a random number between 0 and 3.

Try to combine a random number with the setRotation() method
to get a collectable to turn to face up, down, left or right at
random

Activity: Adding a Counter

To add a Score counter:

1. Click ‘Edit’ at the top of the screen/window and select the
‘Import Class’ option.

2. Select Counter and press ‘Import’.

Activity: Adding a Counter

The final steps are:
1. Tell the world we’re adding a counter named score.
2. Placing it with addObject()
3. Tell our MainCharacter when to add one to the score.

You should remember how to add an object to the world by now!

In our MainCharacter we need to add the following code:

Counter score = (Counter) getWorld().getObjects(Counter.class).get(0);

score.add(1);

Activity: Adding a Counter

Counter score = (Counter)getWorld().getObjects(Counter.class).get(0);
score.add(1);

The first line is telling the Character which counter we are referring
to.

The second line then simply adds the amount (1) to our score
counter using the .add() method which is included in the Counter
class’s code.

Counter score = (Counter) There is a score of class Counter

getWorld() Returns the world in which the
MainCharacter exists

getObjects(Counter.class) Returns a list of all the Counter
objects in the world.

get(0) Returns the first item in that list (as
there is only one counter)

Activity: Negative Collectable

Add another character who will cause the frog to lose a point if it
touches this character.

This character will behave differently to our collectables and main
character classes and will require you to create a new subclass of
actor.

Activity: Two Player Game

Try to develop your game into a two player game.

The second character should be controlled with the W A S D keys.

Try to implement a second counter for the other character that
also increases as it collects the collectables.

Activity: Quick Quiz

a. How many parent Classes
are provided by Greenfoot?
What are they?

b. How many Frog Objects are
used in this game?

c. How many Fly Objects are
used in this game?

d. Is the Score Counter an
object?

e. How many sub-classes are
required for this game?

Random Number of Objects

A loop in programming is a
way to repeat one or more
statements.
The body of the loop will be
repeated while the loop
condition is true.
Similar to the repeat block in
Scratch, Java has while and
for loops.
We will use for loops to create
a random number of objects.

For Loops

for (int i = 0; i < Greenfoot.getRandomNumber(10); i++)

{

Collectables ant = new Collectables();

addObject(ant,Greenfoot.getRandomNumber(8),

Greenfoot.getRandomNumber(8));

}

int i = 0 Declaration and
initialisation

Declares a number variable i and
sets the initial value to 0.

i <
Greenfoot.getRandom
Number(10)

Condition Checks the condition, every time
the variable is changed before
executing the body of the loop.

i++ Change Add 1 to the variable i after
executing the body of the loop.

Activity: Blow Up The Frog

Every time the MainCharacter, the frog object in our case, eats a
Collectable, the fly object, we can increase the size of the frog by a
small value.

We can do so, by using the Image object associated with each
object. All Actor classes have a common method getImage() which
returns an Image object. The Image class in turn has functions like
getHeight(), getWidth() and scale(…) which allows you to get and set
the width and height of the image associated with the object.

Check what happens to the frog if you add this line after you have
eaten the fly.
getImage().scale(getImage().getWidth()+10,

getImage().getHeight()+10);

Extension: Creating a Jumping
Game

You will now be shown a simple game made in Greenfoot which
uses jumping and avoiding enemies as the main game mechanic.
Your task is to try to create your own game which works In the
same way and then develop it yourself.

Creating the World and a
Character

Activity:
1. Create World and Character subclasses.
2. Resize the background using the super() method. 64 by 64

cells each with 10 by 10 pixels.

3. Create a Subclass for Blocks which will act as the floor of the
game

4. Place the Character on top of the blocks.
5. Right-Click the screen and Save the World.

After doing this, the starting co-ordinate for our character can be
found in the Background code. The y-coordinate is going to be
very important!

Setting groundHeight and Adding
Movement

First, we need to set our groundHeight for the MainCharacter. This
will be the starting y-coordinate.

1. Define our private int groundHeight above the act() method
and set it to whatever the y-coordinate is where we placed it.

Remember, in Greenfoot the y-coordinate increases as we move
DOWN the screen.

2. Add movement left and right using the move() method and
left and right arrow keys.

Jumping

If the up key (or space key) is pressed we want our character to
jump.
But we also don’t want our character to jump if they are already
jumping!
So we need to define a couple of boolean variables and use
these:

private boolean canJump = true;
private boolean jumping = false;

i.e. it can only jump, if it is
touching the ground.

Jumping

So if the character can jump and the up key is pressed then it will
be jumping so we set jumping = true;

If jumping is true, then we want the character to move upwards
to a certain height before stopping.

Jumping

Once the character has reached the full height of their jump, we
need them to fall back down again. So as they are no longer
jumping, but they are not on the ground we can use an if
statement to capture this:

Our character should now be able to jump!

Activity: Finish The Game

You should have everything you need to finish the game
yourselves now. Think about how the game works and how you
would implement that in your game.

If you finish making the game, how could you develop it further?
What about adding more obstacles, or maybe adding a power-
up which can temporarily stop the enemies?

